Design and Synthesis of Materials with High Capacities for Hydrogen Physisorption

Hillary Smith, Nick Weadock, David Boyd, Channing Ahn, Brent Fultz (PI)

Caltech

June 14, 2018

2018 DOE Hydrogen and Fuel Cells Annual Merit Review

Project ID: ST120

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline:

- Project Start Date: 08/01/15
- Project End Date: 07/31/18

Budget:

- Funds spent through 03/31/2018: \$897,341
- Federal Share: \$ 1M

Barriers

- O. Lack of Understanding of Hydrogen Physisorption and Chemisorption.
- Reproducibility of synthesis and capacity measurements.
- Develop sorbent materials with increased binding energy and volumetric density.
- Develop cost-effective synthesis processes for promising materials.

Caltech

Partners/Collaborations

- HySCORE (PNNL, Autrey, Bowden) (NREL, Gennett)
- Project lead: Caltech

Relevance: Motivation for using graphenebased carbon

Objectives:

- a. Maximizing the surface-to-volume ratio of adsorbents to maximize hydrogen volumetric densities
- b. Use of metal additives to effect electron transfer to graphene substrate to increase isosteric enthalpy of adsorption DH over typically low values of 4-6 kJ/mole.
- c. Graphene adsorbents have stability against water and oxidation
- d. Slit pore geometry near optimal for gas diffusion

Impact:

- a) Increases of ΔH in Henry's Law regime were achieved through transition metal incorporation.
- b) Bimodal Δ H, with higher Δ H compatible with 340 K sorption

Approach: Graphene as the basis for bottom up platform

Motivated by potential to:

- a) Improve surface area over that of PEEK (2000 m²/g for PEEK vs 2630 m²/g theoretical for graphene, 1400 m²/g in LLNL graphene aerogels) and
- b) Approach amenable to more simple functionalization routes.

5 different synthesis routes explored previously. Literature approaches inadequate for producing relevant microstructure and dropped by this effort.

• Graphene oxide (GO) synthesized from graphite, followed by reduction to reduced graphene oxide and activation with KOH using:

Caltech

* Microwave expansion

- Electrochemical exfoliation of graphite
- Activation of graphene with biomass
- Cold plasma synthesis/activation
- Vertically grown graphene

Approach cont'd: Vertically grown graphene as the basis for bottom up platform

D. Boyd standing in front of the Forza reactor for producing graphene, now in production in Norway. The reactor is open in the picture, revealing the belt (about 1m in width) covered in graphene, visible from the black regions.

Progress continues towards scale-up of graphene production at the company using Caltech-licensed technology. (Above right) The magnitude of quantities produced is visible from the material (black) being scraped off the belt (silver). (Left) SEM images shows vertical graphene without the fibrous material seen in earlier batches.

Caltech

EHT = 10.00 kV Mag = 25.00 K X WD = 7.8 mm Signal A = InLens Date :11 Aug 201

Accomplishments: Transition metal incorporation

Copper								Heat Treatment Gas type		Surface				BET H2 Adsorption				Sieverts H2 Adsorption			
		C:Cu	Cu:C	salt con	onc. Processing		Tre			Area	Characterization Tools			Mea	suremer	nts up to	1 bar	Measurements up to 30 bar			
			atom	ratio M						m2/g	XRF SEM EDS		EDS	# indicates repetitions							
		atom ratio												77K	240K	300K	320K	77K	240K	300K	320K
					stir	r 2h, filter, rir	ise														
Batch 1	CuCl ₂ .2H ₂ O	3366	0.000	3 0.012	wit	th 100 mL wa	ter			1516	x	x	x					x			
Batch 2	CuCl2·2H2O	662	0.001	5 0.06																	
Batch 3	CuCl ₂ .2H ₂ O	94*	0.010	6 0.44*	stir (ce rin: 2.6	r 24 h, entrifuge, dec ise)x3 (orig. 1 54M)	ant, 6:1, 150 125	C 10 C 10	0% H2 bal. Ar 0% H2 bal. Ar	3326 3006	x	x	x					x		x	
Batch 4	CuCl2-2H2O	13	0.076	9 3.14	stir 300 und ove	r 24h, centrifi 00 RPM 1h, d der vacuum ernight	uge ry 150 100	C 10 C va C 10	0% H2 bal. Ar ac. 42h 0% H2 bal. Ar	700 732 773	x	x	x								
Batch 5*	CuCl ₂ .2H ₂ O	62	0.016	1 0.67	0.67 stir 300 eva ove		uge 300 500	c c		2425 2323	x x x	x x	x x			1		x		x	
								O2 plasma 10 min		2014	ł	X	X								
Batch 6*	Cu(NO3)2·2.5H2O	66 0.0			300	00 RPM 1h,	150	с н	2	2111	. X	X	X	2		5					
			0.015	0.63		evaporate overnight		СН	2		X	X	X								
								с н	2	2079	X	X	X					X		X	-
Batch 7	Cu(NO ₃) ₂ .2.5H ₂ O	120	0.008	3 0.35	see	see Batch 6		с н	2	2600	X	X	X	2		4		X		X	
Batch 8	CuCl2·2H2O	120	0.008	3 0.35 see l		e Batch 5															
Batch 9	Cu(NO ₃) ₂ .2.5H ₂ O	178	0.005	6 0.23	0.23 see I		200	СН	2	2943	X	X	X	2	4	8	1	X	X	X	X
Batch 10	Cu(NO3)2·2.5H2O	235	0.004	3 0.18	0.18 see		see Batch 6 200		200C H2		X	X	X	1	1	5	1				
Batch 11	$Cu(NO_3)_2.2.5H_2O$	117	0.008	5 0.35	see	e Batch 6	200	с н	2	2135	X	X	X	2		9					
Batch 12	Cu(NO3)2-2.5H2O	150	0.006	/ 0.28	see	e Batch 6	200	<u>с ін</u>	2	21/4	X	X	X			8		Sie	uorte LI2	Adapte	tion
Nickel						Trootmont	Gastupo	Surface	$\Lambda rop (m2/a)$	Change	Characterization			Mossurements up to 1 bar				Mossuroments up to 20 bar			
			1.0	TTOCCSSING		Treatment	cus type	ofter U2	offer 12b	chunge		CENA	EDC	Tricas	uremen	<u>13 up 10</u>	1.601	ivicus	aremen	13 up 10	So bai
		atom a	itom					arter H2			ANF	SEIVI	203	7714	2404	2004	2204	7714	2404	2004	2201
D · 1 4		ratio r	atio					annealin	g in vac.					//K	240K	300K	320K	77K	240K	300K	320K
Batch 1	NI(INU ₃) _{2.6} H ₂ U	59 (0.0169	stirred ~24h		275C 2h	H2	195	1		X	X	X	X	Х	Х	X				
Batch 2	$NI(NO_3)_{2.6}H_2O$	62 (0.0161	sonicated 180	min	in cont. H2															
Batch 3	NI(NO ₃) _{2.6} H ₂ O	60 (0.0167	sonicated 180	min	275C 2h	H2	184	4		X	X	X			X					
Batch 4	NI(NO ₃) _{2.6} H ₂ O	130 (0.0077	sonicated 180	licated 180 min		H2	232	2453	5.51	X	X	X	X	Х	X	X				
Batch 5	NI(NO ₃) _{2·6} H ₂ O	120 0	0.0083	stirred ~24h		275C 2h	H2	215	2330	8.37	х	X	X	X		Х					
Batch 6	Ni(NO ₃) _{2·6} H ₂ O	110 0	0.0091	stirred ~24h		275C 2h	H2	186	68		Х			X		Х					
Batch 7	Ni(NO ₃) _{2·6} H ₂ O	140 0	0.0071	stirred ~24h		275C 2h	H2		2458		х										
Batch 8	Ni(NO ₃) _{2·6} H ₂ O	150 0	0.0067	stirred ~24h		275C 2h H2			2463		Х										

Accomplishments/Progress:

Cobalt					Heat		Surface Area	-		BET H2 Adsorption					
		C:Co	Co:C	Processing	Treatment	Gas type	(m2/g)	Characterization Tools			Measurements up to 1 bar				
		atom	atom				after H2	XRF	SEM	EDS		_			
		ratio	ratio				annealing				77K	240K	300K	320K	
Batch 1	Co(NO ₃) _{2·6} H ₂ O	60	0.0167	stirred ~24h	290C 2h	H2	1598	x	x		x		x		
Batch 2	$Co(NO_3)_{2\cdot 6}H_2O$	120	0.0083	stirred ~24h	290C 2h	H2	2285	x			x		x		
Batch 3	Co(NO ₃) _{2·6} H ₂ O	150	0.0067	stirred ~24h	290C 2h	H2	2289	x	x		x		x		
	linc				Heat		Surface Area			BET H2 Adsorption					
_		C:Zn	Zn:C	Processing	Treatment	Gas type	(m2/g)	Charac	terization	n Tools	Measurements up to 1 bar				
Z		atom	atom				after H2	XRF	SEM	EDS					
		ratio	ratio				annealing				77K	240K	300K	320K	
Batch 1	Zn(NO ₃) _{2·6} H ₂ O	94	0.0106	stirred ~24h	300C 2h	H2		x	х						
Batch 2	Zn(NO ₃) _{2·6} H ₂ O	189	0.0053	stirred ~24h	300C 2h	H2		x							
Batch 3	Zn(NO ₃) _{2·6} H ₂ O	236	0.0042	stirred ~24h	300C 2h	H2		х	х						
					Heat		Surface Area				BET H2 Adsorption				
Gold		C:Au	Au:C	Processing	Treatment	Gas type	(m2/g)	Characterization Tools			Measurements up to 1 bar				
		atom	atom				after H2	XRF SEM EDS							
		ratio	ratio				annealing				77K	240K	300K	320K	
Batch 1	HAuCl₄·3H₂O	123	0.0081	stirred ~24h	110C 2h	H2	1841		x	x	x		х		
Batch 2	HAuCl₄·3H₂O	628	0.0016	stirred ~24h	110C 2h	H2			x	x					
					Heat		Surface Area				BET H2 Adsorption				
	ilver	C:Ag	Ag:C	Processing	Treatment	Gas type	(m2/g)	Charac	Characterization Tools Measur				rements up to 1 bar		
3		atom	atom				after H2	XRF	SEM	EDS					
		ratio	ratio				annealing				77K	240K	300K	320K	
Batch 1	AgNO ₃	60	0.0167	stirred ~24h	377C 2h	H2									
Batch 2	AgNO ₃	120	0.0083	stirred ~24h	377C 2h	H2	1445		x	x	x		x		
Batch 3	AgNO ₃	180	0.0056	stirred ~24h	377C 2h	H2	2084		x	x	x		x		

Accomplishments/Progress: Transition metal incorporation toward enthalpy modification at the nanoscale

- Some results of transition metal salt incorporation validating nano-scale dimensions of metal species.
- Samples had oxidized during storage, transport and handling before micrographs (courtesy of M. Bowden, PNNL, HYSCORE) were taken.
- All metal incorporated samples showed enhanced Henry's Law enthalpy except for the Zn sample.

Accomplishments: Establishing metal incorporation concentration via TGA

Prior x-ray fluorescence (XRF) data gave semiquantitative metal concentrations.

"Burning" the sample in air to convert the carbon into CO₂ and oxidize the metal via Thermogravimetric analysis (TGA) resulted in reliable quantification of metal concentrations of the assynthesized material.

Thermogravimetric Analysis (TGA) results for the heating of pristine carbon (upper left) and metal-functionalized materials in air. Continuous heating of the samples to at least 650°C in air causes complete loss of the carbon matrix, leaving behind fully oxidized metals. Metal functionalized quantities were 11 wt% (2.5 at%) for the Ni containing sample (lower left), 5.4 wt% Cu in a commercial "graphimet" test sample (manufacturer specified 4.53% (upper right) and 11 wt% (2.2 at%) Co in the lower right. Results can be normalized for quicker XRF analysis.

Accomplishments: Sieverts measurements

Left: Excess hydrogen uptake as a function of pressure at 300K for several difference concentrations of Cu metal all show an enhanced uptake compared to pristine material.

Below: Hydrogen adsorption measurements at 77K and up to 30 bar for materials with varying metal concentrations as compared to unmodified MSC30. The top plot shows the excess uptake, and the bottom plot shows the same results normalized by the specific surface area.

32

Accomplishments: Isosteric Heat Enhancement from transition metal incorporation

Enhancement seen with Ni (and Cu and Co containing samples)

Enhancement not seen in Au

11

Accomplishments: Summary of synthesis and characterization of metalfunctionalized material and uptake enhancement

Many metal functionalized materials show higher excess uptake per unit surface area than pristine materials at both 77K and 296K

12

Henry's Law analysis

Improvement to isosteric heat of adsorption in Henry's Law analysis, or a "differential enthalpy of adsorption at zero coverage" as developed by Cole et al [1]

Above right: shows the uptake for Batch 9 material at three temperatures over a range in pressure suitable for Henry's Law analysis.

Values are extracted from the slope of the plot in figure at right, which plots the parameter k_H as a function of inverse temperature, for which k_H is defined as:

$$k_H H = \lim_{p \to 0} (n/p)$$

 ΔH of -10.8 kJ for 240 and 296K, ΔH of -14.4 kJ for 319K data.

[1] J.H. Cole, D.H. Everett, C.T. Marshall, A.R. Paniego, J.C. Powl and F. Rodriguez-Reinoso, "Thermodynamics of the High Temperature Adsorption of some Permanent Gases by Porous Carbons," J. Chem. Soc. Faraday Trans. I 70, 2154 (1974).

Accomplishments/Initial TPD results courtesy of NREL (Gennett, HYSCORE)

Above: Thermal programmed desorption measurements (TPD) showing the hydrogen signal from a Ni-containing sample. The sample was measured twice- green and blue represent the first and second runs, respectively. Sample was pumped to base pressure 10⁻⁸ Considerable water in sample, due presumably to atmosphere exposure. The first dose without degas showed very little hydrogen. Second dose after a 3 hr degas at 80 °C. Physisorption peak, possible one small peak at approx - 100 °C. The peak intensity is about 100x less than expected for the surface area quoted.

Accomplishments/Initial Caltech TPD results

Left: To improve turnaround, a Caltech TPD system adopted in D. Boyd's lab. H_2 release at 140 K and 340 K likely physisorption or Kubas type binding. Initial tests on Cu nano-particles show H_2 and D_2 results with evidence of isotope mixing using generic TPD processing conditions, as above.

Remaining Challenges and Barriers

- Refinement of graphene syntheses and surface area modification to promote planar structures.
- Improvement to uniformity of Cu atom distribution within graphene microstructure.
- Increasing Cu (and Ni) concentration in a way that minimally diminishes gravimetric uptake.
- Measure H₂+D₂→HD for different Cu, (Ni (Co) depositions on graphene related carbons.
- Evaluate conversion for 140 K and 340 K hydrogen release.

Caltech

• Validation of changes to isosteric enthalpy.

Proposed Future Work:

Continued emphasis on optimized plasma synthesized graphene with vertical walls that have turbostratic stacking (and not a-b)

Refinement of metal functionalization with larger coverage of Cu (and Ni) incorporated with small size.

Greater interaction with PNNL for TEM analysis.

Validation of results with another analysis facility.

Any proposed future work is subject to change based on funding level

Summary

- Objective: To promote high surface packing density and high constant isosteric enthalpy in graphene-based adsorbents.
- Relevance: Adsorbents take up, store and release H₂ in molecular form, minimizing activations barriers associated with bond breaking and/or solid state diffusion as required typically in other types of media, but typically low enthalpy of adsorption requires low temperatures.
- Approach: Use of graphene based structures to promote high volumetric and gravimetric density adsorbents and to serve as a platform for functionalization.
- Accomplishments: Syntheses of relatively large quantities of graphene-based materials and transition metal functionalization efforts toward appropriate dimensions.

- Desorption observed at 340 K
- Collaborations: HySCORE