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Overview (LBNL)

Timeline

Project start date: 09/21/2015
Phase | end date: 09/30/2018

Barriers addressed

» Lack of understanding of hydrogen
physisorption and chemisorption
(Barrier O)

« System weight and volume (Barrier A)

« Charge/discharge rate (Barrier E)

Budget

FY17 DOE Funding: $770K
FY18 DOE Funding: $775K
Total Funds Received: $2.585M (all years)

Team

Funded Partners:

Sandia National Laboratories (lead)
Lawrence Livermore National Laboratory




Relevance and Objectives

HyMARC will provide community tools and foundational understanding of phenomena
governing thermodynamics and kinetics to enable development of solid-phase hydrogen storage
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Relevance (LBNL-specific): Materials by Design Coupled with Advanced

Characterization and Modeling

Project Objectives, overall:

Focus on light materials and synthesis strategies with fine control of
nanoscale dimensions to meet weight and volume requirements via
encapsulation, confinement (A)

Design interfaces with chemical specificity for thermodynamic and kinetic
control (E) of hydrogen storage/sorption and selective transport

Explore novel storage concepts and/or obtain fundamental understanding of
“established” processes via known/idealized systems/materials (O)

Develop in situ/operando soft X-ray characterization capabilities in
combination with first-principles simulations to extract atomic/molecular
details of functional materials and interfaces (O)

Refine chemical synthesis strategies based on atomic/molecular scale insight
from characterization/theory

Establish expertise and capabilities for the H, storage community




Relevance

FY18 Project Objectives:

Develop more complete model for metal hydride-graphene interface based upon in-situ
X-ray spectroscopy and theoretical modeling

Develop synthesis of pure Mg(BH,), NPs wrapped by rGO

Advance tools to enable in-situ X-ray spectroscopic experiments on buried interfaces
in metal hydrides in different working temperature region

Develop synthesis to enable targeted extrinsic doping using graphene nanoribbon
based systems

Perform accurate simulations of high-pressure H, sorption in MOFs based upon
information from CoRE database




Technical Approach: Contributions of LBNL to HYMARC, Integration

Across All Tasks, Access to All Labs

Tasks

2,3,4,5

2,3,4,5
1,4
1,5

MOLECULAR Iﬂ
FOUNDRY

LBNL Team:

Jinghua Guo (jguo@lbl.gov): X-ray synchrotron spectroscopy

David Prendergast (dgprendergast@l|bl.gov): Computational spectroscopy

Jeff Urban (jjurban@Ibl.gov): Phase transitions and nanoscale effects in hydrides
Gabor Somorjai (gasomorjai@lbl.gov): Functional sorbents

Felix Fischer (ffischer@l|bl.gov): Functionalized graphene nanoribbons

Maciek Haranczyk (mharanczyk@lbl.gov): Materials genome for porous materials

Entire HYMARC Team accessing LBNL BES User Facilities

The Molecular Foundry (TMF):

» synthesis, characterization, and simulation of nanoscale materials/interfaces
» National Center for Electron Microscopy

« access to supercomputing (NERSC) through existing Foundry allocations
Advanced Light Source (ALS):

« Soft X-ray absorption/emission spectroscopies (XAS/XES) — in situ
 Ambient Pressure XPS

» Scanning Transmission X-ray Microscopy (STXM) and Ptychography
Active user projects at TMF and ALS and Approved Program Proposal @ ALS
« partnership to foster a new soft X-ray H, storage user community
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Technical Approach: Matched Novel Synthesis, Characterization, and
Modeling for Storage Materials

Theory & Design of Characterization Synthesis & Performance
Storage Materials Evaluation

<100 nm

« Enabling approach: user projects acquired for Molecular Foundry and ALS

* Innovative synthetic routes to metal hydrides and hybrid nanoscale systems to reveal key
phenomena governing H, release/absorption and motivate new H, storage materials

« Developing new acid/base concepts to modify the enthalpy of H, binding in sorbents
» Creating algorithms to enable computation of H, isotherms in framework materials

» In-situ spectroscopic and structural characterization techniques that establish the role of
interfaces in controlling H,-storage reaction mechanisms and pathways;

« Computational modeling of structure, chemistry and dynamics of interfaces and additives
for nanoscale H, storage systems and interpretation of X-ray spectroscopy
I —————



Accomplishment: Synthetic control over Mg(BH,), nanoparticle phase
- Tasks 1,4 (Urban)
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- First achievement of the pure phase control in encapsulated Mg(BH,),/rGO materials
- Development of the facile synthetic method for 3 different phases (alpha, beta, gamma)

of Mg(BH,),




Accomplishment: Reversibility in y-Mg(BH,),/rGO
— Tasks 2,3,4 (Urban)

i. Mg(BH,),/rGO(MBHg) ii. Dehydrogenated MBHg iii. Rehydrogenated MBHg
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Our Mg(BH,),/rGO hybrids also show reversibility for alpha/beta phases - not demonstrated in literature




Accomplishment: in-situ XAS cell developments
for Hydrogen storage- Tasks 1,3,4,5 (Guo)

In-situ flow gas cell (1 bar, max. 400°C) Quasi solid-gas cell (UHV, max. 500°C)

Material based H, absorption/desorption and
CO, capture can be studied using in-situ/quasi
XAS technique.
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* Multimodal in-situ/quasi gas cells have éﬁi W%

developed for studying gas/solid interaction T

in different working temperature region and Photon Exergy (V) ’
adoptable to varying beamlines in the ALS. * Proposed experiments in progress from Urban’s

Group. (Mg(BH,),)
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Accomplishment: Ex situ characterization
on metal borohydrides— Task 3,4,5 (Guo, Stavila, Klebanoff)

XAS characterizations have been applied on
Mg B, C, N, O K-edge and Ti, Fe L-edges for
nano, TiF,/TiCl;, Fe, Tungsten Carbide (WC)
catalyzed MgB,. (collaborative with L. E.
Klebanoff and V. Stavila from Sandia)

Fe or TiF; doped MgB,
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Accomplishment: Ex situ characterization
on metal borohydrides— Task 3,4,5 (Guo, Stavila, Klebanoff)

XAS characterizations have been applied on
Mg B, C, N, O K-edge and Ti, Fe L-edges for
nano, TiF,/TiCl;, Fe, Tungsten Carbide (WC)
catalyzed MgB,. (collaborative with L. E.
Klebanoff and V. Stavila from Sandia)

Nano MgB, Tungsten Carbide additive
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Accomplishment: Ex situ characterization
on metal borohydrides— Task 3,4,5 (Guo, Stavila, Klebanoff)

XAS characterizations have been applied on
Mg B, C, N, O K-edge and Ti, Fe L-edges for
nano, TiF,/TiCl;, Fe, Tungsten Carbide (WC)
catalyzed MgB,. (collaborative with L. E.
Klebanoff and V. Stavila from Sandia)

Lithium nitride Lithium borohydride
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Accomplishment: In-situ XAS investigation
in Mg hydrides - Tasks 4 (Guo, Urban)

* Ni-doped rGO-Mg shows enhanced kinetic, the in-situ XAS characterization showing Mg
hydride detected at 1 bar H, environment.
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Accomplishment: In situ characterization
on Mg(BH,), — Task 4 (Guo, Prendergast, Urban)

in situ XAS characterization at B K-edge under
pressure of H, again reveals evidence of boron

oxidation ... but also hydroxide (based on DFT
interpretation).
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Accomplishment: Synthesis and understanding of functional
graphene nanoribbon Mg — Task 4,5 (Prendergast, Urban, Fischer)

Graphene Nano-Ribbons (GNR) synthesized by Fischer (LBNL)

H, wt. % in total composite
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... explore additional chemical or catalytic functionality
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Accomplishment: DFT simulations of interfacial structure of
Mg/4N-GNR — Task 4,5 (Prendergast, Urban, Fischer)

Based on the thermodynamics, the edge of GNR may be terminated by H(-CH) or 2H(-CH,)
depending on the cycling conditions (temperature and pressure) and the substrate (Mg/MgH,)
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Accomplishment: DFT simulations of interfacial structure of
Mg/4N-GNR — Task 4,5 (Prendergast, Urban, Fischer)

vacancies drive H, dissociation
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Accomplishments: Synthesis of GNRs Functionalized with Binding Sites

for Molecular Defined Hydrogen Dissociation Catalysts
— Task 5 (Fischer, Klebanoff)

« Synthesis of GNRphen \ N
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Accomplishments: Coordination of a Potent Hydrogen
Dissociation/Association Catalyst [phenlrCp*OH,] to GNRphen

. — Task 5 (Fischer, Klebanoff)
« Challenge: Modification of a Reported Synthesis of [phenlrCp*OH,]

2+(PFe ) 2+(PFe ), 2+ (PFs )
= Z
, AgPFg MeCN, . phen, MeCN, | ‘ . . . .
C o CF 24C.3n | 2403 N P H,0 M cr | active H, dissociation catalyst
ey ' A e Jalt - - FukS
cp el sow MV NcMe 63% N NCMe | g N O (prepared as a reference)
N SN

2+ (PFg )2

1. (fCp(MeCN)sl. ]
™ MeCN, 24°C, 3n 7
N N N . - . . .
N 2.H0 NS W+ active H, dissociation catalyst
A NN O conjugated to carbon matrix
- =

Continuing Work:
=  Samples of [GNRphenlrCp*OH,] and the parent complex [phenlrCp*OH,)]

have been transferred to Sandia (L. Klebanoff) for H,/D, kinetic exchange
studies.

= Integration of [GNRphenlrCp*OH,] with hybrid H, storage material (e.g
MgH., AlH,, complex hydrides) is ongoing.




Accomplishments: GCMC simulations of H, adsorption
-Tasks 1, 6 (Camp, Stavila, Prendergast, Haranczyk)

LR

GCMC ﬁ {:} @

CoRE MOF Database

constant u,V,T
variable number of
H, adsorbates

Simulation inputs: Structures models from our Computation-Ready

1. Structures: MOF framework coordinates Experimental MOF database’

+ H, geometry H, potentials: 3-site and 5-site models that include

2. Energetics: potentials for H, — MOF and dispersion and electrostatic interactions

H,— H, interactions NIST hydrogen equation of state? and Peng-

3. Equation of state: Robinson equation of state compared to NIST
. Fugacity coefficients reference data for H, densities and fugacities®
 Absolute adsorption — eXCess 1. Chung, Y. G.; Camp, J.; Haranczyk, M. et al., Computation-ready, experimental metal-
adsorption Conversion organic frameworks: A tool to enable high-throughput screening of nanoporous crystals.

Chemistry of Materials 2014, 26, 6185-6192.
2. Lemmon, E. W.; Huber, M. L.; Leachman, J. W., Revised standardized equation for
. . hydrogen gas densities for fuel consumption applications. Journal of Research of the
Simulation outp uts: National Institute of Standards and Technology 2008, 713, 341.

= = 3. Zhou, L.; Zhou, Y., Determination of compressibility factor and fugacity coefficient of
excess and abSOIUte adsorptlon lSOthermS hydrogen in studies of adsorptive storage. Int J Hydrogen Energ 2001, 26, 597-601.



Accomplishment (Sorbent thermodynamics): Library of
MOFs for QMC and GCMC model validation

Predictions vs. Experiment (HyMARC)

77 K H, isotherms for canonical MOFs GCMC simulations
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= GCMC calculations can be used to accurately predict the hydrogen adsorption isotherms
and isosteric heats of adsorption in MOFs with and without open metal sites
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Accomplishments: Simulations of H, adsorption in a model
MOF-74
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= At 77 K, high interaction energy open metal sites are not needed to maximize H,
deliverable capacity

= At near-ambient temperatures (243 K), stronger OMS interaction energies increase
deliverable capacity

= At intermediate temperatures (180 K), there is an interesting tradeoff between these

effects
-




Response to 2017 AMR Reviewer Comments

“Project Weaknesses”
« The diversity and number of ongoing efforts is a project weakness, but this is common with large and
complex projects and should improve with time and the advent of more seedling projects
‘We used this feedback to sunset two projects that didn’t align with seedling research.

Lack of characterization and analytical work on the Al-based hydride compared to the current Mg work
‘Related to above comment — we have focused our program on Mg-based materials such as MgB,,
Mg(BH,), to better align research goals across core labs and seedlings.

« The encapsulation effort did not appear to be laser-focused on providing an optimal model material
platform for HYMARC collaborations, and it could benefit from better integrating with the HyMARC
computational team’s needs.

: XAS results of encapsulated metal and pure metal have been supported by theoretical investigations
to provide an optimal structure at the interface between metal and graphene.
This collaborative work, published in Nano Letters (2017), provides a design strategy for property
optimization using graphene-based materials.

* Unclear innovative synthetic strategies of light metal hydride in nanoscale via encapsulation.

: We have clarified which aspects of Mg(BH,), material properties, i.e. phase transition, reversibility

» Experimental results leave important questions unaddressed. It is not clear what the nature of rGO
coating is or why GO is used to modify water-sensitive Mg-borohydride when pristine oxygen-free
graphene in an organic solvent would be a more appropriate option.

: We have proved theoretically that in Mg/rGO system, an atomically thin oxide layer at the interface
between Mg nanoparticles and graphene encapsulation is beneficial for hydrogen storage
applications. This is published in Nano Letter, 2017.



Response to 2017 AMR Reviewer Comments

“Recommendations for additions/deletions to project scope”
» The project should perform similar encapsulation work and analysis to other metal hydrides to better
understand the phenomena involved.

* The project should continue to investigate more complex metal hydrides.
 We have been working on metal-doped magnesium hydrides and metal borohydride. We are
addressing those works in this presentation. Metal-doped magnesium hydrides work is
published in Advanced Energy Materials 2017




Collaborations

= HySCORE team (Long, UC Berkeley; Gennett, NREL)

= Godwin Severa, U of Hawaii (seedling project) — molecular
dynamics simulations of BH,/etherate coordination of Mg

= D.J. Liu, ANL (seedling project) — initial discussions of X-ray
spectroscopic characterization of NaBH, NPs in graphene and
exploration of borohydride-graphene interactions

= Agiltron, Inc. Scale up of encapsulated metal hydrides via SBIR




Remaining Challenges and Barriers

= Achieve size control in synthesis of encapsulated Mg(BH,),
materials

» Incorporate theoretical insights on graphene-hydride interface into
advanced synthesis of these materials

» Performing in-situ soft x-ray spectroscopies achieving realistic
hydrogen storage (i.e. UHV requirement)

= Understanding coordination/reactivity of Mg(BH,), with oxide and
graphene interfaces

= Standard GCMC simulation approaches for prediction of H,
adsorption involve transferable force-fields which do not sufficiently
describe specific MOFs with open metal sites

= The relations between the strength and number of open metal sites,
overall pore morphology and the adsorbent performance in H,
storage are not fully understood




Proposed Future Work

« Further develop in-situ XAS cell for operating at higher temperatures (600° C)
and higher H, pressure (up to 10 bar) required focused X-ray beam

» Determination of the phase transition in Mg(BH,), NPs wrapped by rGO by in-
situ XAS and simulations — Task 1,4

 Kinetic study of H,/D, exchange with [GNRphenIrCp*OH,] as a model for
hydrogen activation. Comparison of the performance of GNR conjugated
catalysts to the parent molecular structure — Task 5

« Synthesis of hybrid system composed of nanodispersed hydrogen storage
material (e.g MgH,, AlH;, complex hydrides) encapsulated in a
[GNRphenlrCp*OH,] matrix. Evaluation of the hydrogen absorption/desorption
kinetics-Task 4

« Development of a protocol to perform simulations of hydrogen adsorption in
MOFs without empirical parameters (ab initio isotherms). Characterization of
large sets of materials — Task 1,6

» Systematic study of the relation between the structure and chemistry of
diverse MOFs, and H2 adsorption (so far, we have done it only for an example
1D channel system based on MOF74) — Task 1,6

Any proposed future work is subject to change based on funding levels. ‘




Technology Transfer Activities

= Agiltron, Inc. together with Urban won a Phase 2 SBIR

relating to scale up and kinetics of encapsulated metal
hydrides

= HyMARC presented research at annual Tech Team
meeting

= 2 new patents, and 3 new records of invention filed in the
past year.

Any proposed future work is subject to change based on funding levels. ‘




Summary

» Synthetic-control over various phases of Mg(BH,), NPs in rGO with the
reversibility

» Development of in-situ H, XAS capability at ALS for absorption/desorption
experiments

* In-situ XAS measurements of Mg(BH,), up to H, pressure of 1 bar

« Synthesis of carbon based matrix containing phen binding sites for molecular
defend H, activation catalysts .

« Synthesis and IR/Raman characterization of a highly active H, dissociation
catalyst [GNRphenlrCp*OH,] bound to a GNRphen matrix.

« Demonstrated ability to model high-pressure H, storage in metal-organic
framework adsorbents using classical GCMC, and verified the simulations using
experiments run within HyMARC




Planned Milestones and Status: FY17 and FY18

Task Completion Date
Project Milestone Type | Original | Revised | % Progress Notes
Planned | Planned i Complete
Use QMC, DFT, and force fields to compute H; binding
and select appropriate levels of theory for MOFs. LLNL and LBNL are working on finite-
size/extended system corrections
Revised milestone: Compute H; binding curves with | PM |12/31/17 3/31/18 70% based on MOF-74. Study of different
different computational methods for model MOFs to . DFT functionals on model
establish protocol for accurate physisorption noncovalent systems published in
calculations recent sorbent review.
Completed by Maciek Haranczyk
Sensitivity analysis of local binding and second-sphere ites i ;
y y! g p M | 3/31/17 9/30/17 | 100% (LBNL) for open metal'5|tes in MOFs
effects Results to appear in sorbent
perspective
Rank improvement strategies for sorbents. Decision Strategy and results reported at
criterion: select 2 with greatest potential for GNG | 3/31/17 3/31/17 100% | AMR. Manuscript for submission to
increasing AH® En. Eny. Sci. in progress
Modify LEIS instrument to enable laser-induced Demonstrated feasibility of ion
PM | 6/30/17 100%
thermal desorption /50 6/30/17 ° | beam-based desorption technique
Evaluate additive/composite strategies for improving Evaluation of multiple strategies in
effective AE il | b 9/30/18 o progress

PM=progress measures; M=SMART milestone; GNG=Go/No-go.




Planned Milestones and Status: FY17 and FY18

Revised language: Public release of databases,
synthetic protocols, characterization methodologies
optimized for storage materials

Prototype hydride surface and interface chemistry
kinetic models M 9/30/17 i
Amorphous phases and defects model formalism PM |12/31/17 12/31/17 100%
Sensitivity analysis of morphology and microstructure| PM | 3/31/18 3/31/18 100% Completed analysis, reported in
0 .
LLNL AMR slides
Rank improvement strategies for hydrides. Decision .
criterion: select 2 with greatest potential for reducing| GNG | 3/31/18 3/31/18 50% Nangscaling and. Snslete o
effective AH experimentally
Parameterize integrated kinetic model for Thermodynamic parameters
representative B-N-Al-hydrides PM | 6/30/18 75% completed. Some kinetic
parameters have been calculated
for Na-Al-H and Mg-B-H
Compute sorbent isotherms from QMC data using
CoRE database of MOFs
PM | 9/30/18 0% Not started
Milestone delayed until Phase 2 due to lack of
personnel with requisite expertise
Public release of codes, databases, synthetic

protocols, characterization methodologies optimized Not started. Release of codes is a
for storage materials time-consuming process that will be
M | 9/30/18 0% difficult to complete for codes that

as of the date of this report are not
ready.

PM=progress measures; M=SMART milestone; GNG=Go/No-go.
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Challenge: Incorporation of Discrete Hydrogen Dissociation Catalysts
into the Shell of GNR Encapsulated Hydride Storage Materials

Activation of H, by Catalyst

H, activation

H-Storage
Material

Scientific Question:

= Can we lower the reversible H, dissociation/association activation barrier by
introducing known discrete homogeneous hydrogen dissociation catalysts in the
nanoparticle matrix?

Technical Challenge:

= Can we decorate the edges of graphene nanoribbons (GNRs) with metal

coordination sites that co-locate the H, dissociation/association catalysts at the
GNR nanoparticle interface?




Remaining challenges and future plans
for soft x-ray spectroscopies @ ALS (Guo)

Performing in-situ soft x-ray spectroscopies achieving realistic hydrogen storage
are extremely challenging (i.e. UHV requirement)

Future instrumentation developments planning to overcome challenges

In-situ cells

(high T >600°C & P >10bars) In-situ XAS & RIXS Beamlines

* New cell designs + Beamline 8.0.1.4 (in operation) 80-1250 eV
« High-pressure x-ray transparent membrane Commissioning soon
development * Beamline 7.3.1 (August 2018 ) 250-2000 eV
(smaller in size, requires focused x-ray beam ) < Beamline 6.0.1(Spring 2019) 250-2500 eV
1506 T T B K-edge 200 eV
I 0o N K-edge 400 eV
T L ? T.M. L-edges 400-1100 eV
- e 0 = ) Na, Mg, Al & Si K-edge <2500 eV
L gwor o wann s
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