

Proudly Operated by Battelle Since 1965

Hydrogen Storage Characterization and Optimization Research Effort (HySCORE)

Tom Autrey, Mark Bowden, Abhi Karkamkar, Bojana Ginovska, Marina Chong, Adrian Houghton, Iffat Nayyar, Gary Edvenson

Pacific Northwest National Laboratory June 15, 2018

Project ID: ST132

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project Start: 10/1/2015 **End:** Project continuation determined by DOE. Currently scheduled through 9/30/18

Budget PNNL

FY16	\$1005 K
FY17	\$1080 K
FY18	\$ 500 K
Total	\$ 2585 K

Barriers

- General:
- A. Cost; B. Weight and Volume; C. Efficiency; E. Refueling Time
- Reversible Solid-State Material:
- M. Hydrogen Capacity and Reversibility;
- N. Understanding of Hydrogen Physi- and Chemi- sorption; O. Evaluation Facilities.

Partners/Collaborators

- NREL Tom Gennett, Phil Parilla
- NIST Craig Brown, Terry Udovic
- LBNL Jeff Long, Martin Head-Gordon
- HyMARC Brandon Wood, Vitalie Stavila
- Hawaii Craig Jensen
- DICP Chen, T He
- AIST Q Xu, Y Himeda, H Kawanami
- Erlangen Nuremberg K Müller

Milestones

- 09/30/2017 Provide analysis and characterization of 2 samples from seedling projects (NMR, TEM or Calorimetric) complete
- 12/31/2017 Heats of adsorption of H₂ in sp² and sp³ boron doped carbon. Determine most accurate computational protocol (density functional theory, DFT), benchmarked to published experimental determinations for graphene materials, to calculate energies of H₂ sorption in boron (2 – 8 wt%) doped graphene to understand nature of binding sites. The work will provide an analysis of binding energies of sp² and sp³ hybridized boron. The calculations will be benchmarked against experimental measurements of B doped carbon materials by collaborators at NREL.
- 03/31/2018 Reaction calorimetry. Rate enhancement of H₂ uptake in Lewis base adducts of borane clusters. Measure the rate of H₂ uptake by solvent free and the THF solvate of Mg(B₃H₈)₂ by reaction calorimetry and follow the appearance of Mg(BH₄)₂ at temperatures between 300 450 K. delayed 50% complete
- 06/30/2018 Demonstrate that Mg(BH4)² can be regenerated from Mg(B10H10) at T < 150 C and P < 150 bar. on track
- 09/30/2018 Provide analysis and characterization of 2 samples from seedling projects (NMR, TEM or Calorimetric) on track

3

Relevance

We build upon the guidance provided by Hydrogen Storage Centers of Excellence

PNNL leverages unique capabilities to assist material developers:

- Solid-state in-situ high-pressure variable-temperature ¹¹B,¹³C,¹⁵N NMR (to identify key intermediates involved in the release and uptake of H₂),
- Solid-state low temperature ¹H and ²H NMR (5 300 K) to investigate physi-sorption of H₂, ultimate goal to validate > 2H₂/metal site.
- Variable pressure reaction calorimetry to experimentally determine enthalpy of H₂ addition in solid and liquid hydrogen stores (high pressure cells unique to PNNL)
- TEM and high pressure XRD for materials characterization

Goal of Consortium:

- to assist materials developers to measure (and validate) critical properties and to double energy density from 25 to 50 g H₂/liter.
- to develop and enhance FCTO hydrogen storage **core characterization capabilities**
- to validate <u>new concepts</u> for input into predictive models that will accelerate progress of materials developers and improve approaches to onboard H₂ storage

Impact Collaborations

Proudly Operated by Battelle Since 1965

providing access to instrumentation and sample preparation

- Argonne ¹¹B NMR NaBH₄@graphene
- NREL ¹¹B NMR MgB₂ and MgBH₄@ Al₂O₃
- NREL ¹¹B NMR of B-doped carbons
- NIST $THF_X * Mg(^{11}BD_4)_2$ for neutron studies
- LBNL Low temperature ²H NMR Mg-dobdc
- Caltech HR TEM
- SRNL High pressure XRD
- Geneva ¹¹B NMR and calorimetry unsolvated $Mg(B_3H_8)_2$.
- DICP Reaction calorimetry ΔH_{H2} and validation of claims.
- AIST High pressure NMR *in–situ* solution phase NMR

Approach Dynamic connection between theory and experiment

Proudly Operated by Battelle Since 1965

Overview Progress and accomplishments with sorbents, solids, and liquids

- B-doped carbon (NREL)
 - Coronene and graphene (theory) Increase binding energy by ca. 25-100%
 - H₂ attracted to defects not to B
 - Complex hydrides (Hawaii, Geneva)
 - Mg(BH₄)₂ Lewis base adducts play multiply roles to enhance reactivity
 - phase change/ eutectic mixtures to lower melting point
 - shuttle boranes
 - Catalytic activation of H₂
 - Liquid carriers (DICP, AIST)
 - 'PhOH' ΔH_{-H2} ca. 61 65 kJ/mol H₂
 - Modify thermodynamics by increasing *electron density* validate using calorimetry
 - Decrease H₂ release temperature by 65 K

Validating approach Benchmarking theory H₂ physisorption on carbon

Graphene C₅₀

binding energy 5.2 kJ/mol

Approach: compare variety of basis sets, functionals, dispersion corrections to find best agreement with experiment – use graphene as model

LDA overestimates binding energy. GGA better but can underestimate binding energy. Best agreement for graphene experiment and theory vdW-DF2 with revPBE exchange

Iffat Nayyar

binding energy 10.6 kJ/mol increases when spacing decreases. Use 15 Å in calculations to focus on B-doping effects

Accomplishments B-doped coronene literature reports for binding energy of H₂ to B-doped carbon Pacific Northwest ranges from 5 to >50 kJ/mol. what is real?

- 1st B-doped into coronene increases binding energy (6.2 to 7.6 kJ/mol)
- 2nd B-doped on same ring actually predicted to decrease binding energy (7.6 to 5.6 kJ/mol).
- 2nd H₂ (to single B- doped coronene) slightly reduced binding energy and prefers opposite side
- BN ring binds H_2 more weakly then all carbon ring (6.2 to 5.5 kJ/mol)

System	Nomenclature	Binding Energy (kJ/mol H ₂)		
$C_{24} H_{12}$	С	6.2		
B C ₂₃ H ₁₃	В	7.6		
N C ₂₃ H ₁₃	Ν	6.7		
B ₂ C ₂₂ H ₁₂	BB ortho	6.6		
	BB meta	5.9		
	BB para	5.6		
$B_2 C_{22} H_{12}$	BN ortho	6.8		
	BN meta	7.4		
	BN para	6.9		
Β ₃ Ν ₃ C ₁₆ Η ₁₂	BN cyclic	5.5		

<u>Future work</u>: identify *descriptors* to correlate binding energy, e.g., charge, bond order, symmetry, defects.

Accomplishments – B-doped graphene Calculated binding energy in B, BN and CBN graphene. Something unique about CBN

System	Nomenclature	Site of Physisorption	Binding Energy (kJ/mol H ₂)
C ₅₀	С	Top site C	5.2
B C ₄₉ H ₁	D	Top site C ortho	6.6
	Б	Hollow site	5.8
B ₆ C ₄₄ H ₆	nB		
BNC ₄₈	BN meta	Top site C ortho	5.2
B ₃ N ₃ C ₄₄	BN cyclic	Top site N	5.4
B ₁₇ N ₁₇ C ₁₆		Bridge site C-N	12.5
	CDN	Top site N	8.3
		Hollow site	8.3
		Top site B	7.6

B-doped graphene E = 6.6 kJ/mol

*H*₂ attracted to <u>defects</u> created in boron doped coronene. What is best way to generate the most defects in graphene?

Summary – Boron doped C

correlation between gas phase coronene and solid state graphene binding energies sufficient to provide predictions of targets

Proudly Operated by Battelle Since 1965

Molecular vs Extended Systems Coronene vs Graphene B3LYP-D3 vs VASP

Sorbents

- vdW-DF2 method with revPBE exchange provides best agreement with experiment
 - B-doped carbon increases binding energy of H₂ by 25 %
 - CBN graphene appears uniquely interesting (E = -12.5 kJ/mol)
- Peer review paper with NREL describing results

Potential future work

 Deep dive into coronene to look more closely at 'parameters' enabling larger binding energies with H₂

Solid* phase hydrogen carriers

* solid becomes liquid at 100°C - liquid may have some distinct advantages

Results

- A simple cycle describing reversible reaction pathway
 - Nido + $H_2 \Leftrightarrow$ Arachno
 - Arachno + H⁻ ⇔ Hypho ٠
 - Hypho \Leftrightarrow Nido + BH₄⁻
- A mechanism for formation of 'unstable' $Mg(B_{3}H_{8})_{2}$.
 - $2 B_2 H_7^- \rightarrow B_3 H_8^- + B H_4^-$
- Dual role for THF
 - Phase change
 - Catalyst
 - H₂ activation
 - BH₃ transfer

 $THF_3Mg(BH_4)_2$

Proudly Operated by Battelle Since 1965

Key Accomplishment

Validated H₂ uptake by closoborane MgB₁₀H₁₀ Hawaii, Craig Jensen, Phuong Nguyen, Sunil Shrestha

Following cycling in PCT at 180 °C

Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Battelle Since 1965

			Amount/Mol%					
			Species / δ ¹¹ B (ppm)					
Exp. #	Sample	Conditions	B(OH) ₄ ⁻ (2)	[B ₁₀ H ₁₀] ²⁻ (0 & -30)	[B ₁₂ H ₁₂] ²⁻ (-15)	[BH ₄]⁻ (-42)	[B ₃ H ₈] ⁻ (-31)	Other
1	Ballmilled-B10 + 10 MgH ₂	5 mins*6 cycles, 1 min break	-	59	-	41	-	-
2	rehyd-ballmilled mixture	11 MPa H ₂ - 200°C - 1d	-	34	-	66	-	-

Last year provided base line

Insight into mechanism will help guide rational selection of catalyst

 $H^- = MH$

Recall only have H₂ and H- (and THF)

Look for patterns in complex reaction schemes to 'simplify' mechanism

To developed 'rules of thumb' for H_2 uptake and release from $B_{10}H_{10}$ to BH_4

nido H_2 $H^ H_2$ Gary Edvenson $B_5H_{10}^ B_5H_9^{2-}$ arachno arachno $\mathbf{B}_{4}\mathbf{H}_{7}^{-} \xrightarrow{-\mathbf{B}\mathbf{H}_{4}^{-}} \mathbf{B}_{5}\mathbf{H}_{11}^{2-} \qquad \mathbf{B}_{5}\mathbf{H}_{10}^{3-} \xrightarrow{-\mathbf{B}\mathbf{H}_{4}^{-}} \mathbf{B}_{4}\mathbf{H}_{6}^{2-}$ nido H₂ H₂ $\begin{array}{cccc} H_{4} & H_{9}^{-} & H_{-}^{-} & H_{4} & H_{10}^{2-} & H_{2} & H_{4} & H_{8}^{2-} \\ H_{4} & H_{9}^{-} & H_{2} & H_{4} & H_{8}^{2-} \\ H_{4} & H_{9} & H_{8} & H_{8}^{2-} \\ H_{4} & H_{10} & H_{10} & H_{10} & H_{10} \\ H_{10} & H_{10} & H_{10} & H_{10} & H_{10} \\ H_{10} & H_{10} & H_{10} & H_{10} & H_{10} \\ H_{10} & H_{10} & H_{10} & H_{10} \\ H_{10} & H_{10} & H_{10} & H_{10} \\ H_{10$ arachno $-BH_4^ B_3H_6^- \xrightarrow{H_2} B_3H_8^- \xrightarrow{H^-} B_3H_9^{2-}$ arachno nido $-BH_4$ $2 \mathbf{B} \mathbf{H}_{4}^{-} \stackrel{\mathrm{H}^{-}}{\longleftrightarrow} \mathbf{B}_{2} \mathbf{H}_{7}^{-} \stackrel{\mathrm{H}_{2}}{\longleftrightarrow} \mathbf{B}_{2} \mathbf{H}_{5}^{-}$

Accomplishments reaction pathway described by simple cycle

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

interconversion between nido – arachno and hypho boranes involve, H_2 , H^- and BH_4^- respectively

- Insight into regeneration?
 - If rate limiting step is H₂ activation, then need catalysts to activate H₂ to convert nido to arachno

Observation of $Mg(B_3H_8)_2$ is not consistent

with theory. Intermediates in gray balloon should not be observable – if calculated structures (i.e., PEGS) are comparable to experimental structures

- PEGS structure not consistent with experimental structure
- Need to solve the structure and/or measure ΔH by calorimetry or PCT*
 - *University of Hawaii

Key Accomplishment Experimental measurement of ΔH

Use calorimetry to measure H_2 uptake. (THF adduct) – change the sign to get ΔH_{H2} release ca. ~70±10 kJ/mol (not 150 kJ/mol)

 $Mg(B_{3}H_{8})_{2} \cdot xTHF + 2MgH_{2} + 2H_{2} \rightarrow 3Mg(BH_{4})_{2}[\cdot^{x}/_{3}THF]$

BH[⊿]-

 $B_3H_8^-$

shows near quantitative conversion

200°C

180°C

160°C

135°C

125°C

60°C

Calorimetry provides enthalpy for Mg(BH₄)₂·xTHF formation from Mg(B₃H₈)₂·xTHF:2MgH₂ (5 bar H₂)

Marina Chong

Summary Lewis base additives enhance properties of complex hydrides, e.g., THF_x*Mg(BH₄)₂

- Lewis base adducts lower the mp of the hydride so kinetics are significantly enhanced in the melt - need to find way to keep it a liquid throughout
- THF adduct 'stabilizes' Mg(B₃H₈)₂ intermediate still unstable (70 kJ/mol) but lower than 150 kJ/mol
- THF may act as a 'catalyst' to: (i) stabilize and transfer BH₃*THF intermediates (<u>back-up</u>)
 - THF*Mg(BH₄)₂ \Leftrightarrow HMgBH₄ + THF*BH₃
 - $2\text{THF*BH}_3 + Mg(BH4)2 \Leftrightarrow \text{THF}_2 Mg(B_2H_7)_2$
- Disproportion of two BH- species to make a stable and unstable intermediate provides a pathway to make unstable intermediates
- THF adduct directs Mg(BH₄)₂ to MgB₁₀H₁₀ and MgB₁₀H₁₀ can be reconverted back to Mg(BH₄)₂ so long as you keep it in liquid phase (University of Hawaii)
- <u>Future work</u>: Developing approaches to retain liquid phase complex hydrides to enhance kinetics and enable catalysts

Accomplishments – validating concepts Liquid phase hydrogen carriers (LPHCs)

tuning thermodynamics – stabilizing arenes and/or destabilizing cycloalkanes

- Increasing conjugation decreases ΔH_{H2}
- Adding heteroatoms decreases ΔH_{H2}
- Clot, Eisenstein & Crabtree
 - Heteroatoms destabilize 'charged' carrier
- Jessop
 - Electron donating substituents decreases ΔH_{H2}
 - Linear correlation with Hammett $\sigma(p)$ X-Ph \Leftrightarrow X-C₆H₁₁

PNNL

- Tuning ΔH_{H2} with Lewis base
 - ♦ H₂ + CO₂ + B: ⇔ [HCO₂-][BH⁺]

DICP

- Electron donating groups decreases ΔH_{H2}
- * ΔH_{H2} < ΔH_{H2}

Accomplishments - reaction calorimetry Validating concepts – modifying ΔH with electron donating substituents

Proudly Operated by Battelle Since 1965

Accomplishments Predicting the temperature required for H₂ release

Linear correlation with Hammett parameter* X-Ph. X = H, Me, OH, NH2, NMe2, NH3+, O⁻ *Phil Jessop

- $\blacktriangleright \Delta G = \Delta H T \Delta S$
- At $\Delta G = 0$; $K_{eq} = 1$ bar H_2
- $\blacktriangleright \Delta H = T \Delta S$
- ► T (1 bar H_2) = $\Delta H/\Delta S$
- Assume ∆S ~ 125 J/K/mol
- △H gives estimated temperature for H₂ release.
 E.g.,
 - ΔH(C₆H₆) = 69 kJ/mol H₂ T_{1bar H2} ca. 280 °C
 - ΔH(C₆H₅O⁻) = 61 kJ/mol H₂ T_{1bar H2} ca. 214 °C
- Ca. 65 °C decrease in temperature for H₂ release

VAL RENEWABLE ENERGY LABORATOR

Liquid carriers (transport and off board storage)

- Decrease ΔH_{H_2} adding negative charge to arene ring results in a lower enthalpy of H₂ adsorption in a predictable way.
 - · Provided 'further' validation for correlation between ΔH_{H2} and Hammett $\sigma(p)$ parameter
- Developing methods to predict enthalpy hydrogenation for families of LPHCs
 - Want both small intercept and larger slope
- Future work
 - Use DFT to calculate ΔH_{H_2} for extremes of Hammett parameters to get slope to predict T for H₂ release from hydrogen storage materials and carriers

Collaborations

- Argonne ¹¹B NMR NaBH₄@graphene
- NREL ¹¹B NMR MgB₂ and MgBH₄@ AI_2O_3
- NREL ¹¹B NMR of B-doped carbons
- NIST THF_X*Mg(¹¹BD₄)₂ for neutron studies
- LBNL Low temperature ²H NMR Mgdobdc
- Caltech HR TEM
- SRNL High pressure XRD

- Erlangen; K Mueller (H₂CO₂, HCO₂-)
- DICP; T He, P Chen (aq. PhOH)
- KIST; CW Yoon, H Jeong (Catalysts)
- Geneva; H Hagemann (unsolvated Mg(B₃H₈)₂.
- AIST; Q Xu, Y Himeda, H Kawanami (Catalysis)

Remaining Challenges and Barriers

An approach to maintain liquid phase of complex hydrides throughout the H₂ release (and uptake) cycle

- Prevent phase separation of less soluble species
- Identify catalysts to activate H₂ to convert nido to arachno boranes
- Light weight additives to control reaction pathways in complex hydrides
 - **make** $B_{10}H_{10}^{-}$, not $B_{12}H_{12}^{-}$
 - make B₃H₆²⁻ to avoid phase separation of MgH2
- Identify the physiochemical properties of 'defects' in sorbent materials that provide > 12 kJ/mol binding energy
- Novel approaches to tune thermodynamics of hydrogen carriers to lower 'operating' temperature to release H₂ from hydrogen carriers
- Synthesis of hydrogen carriers without using H₂
- Understand the correlation between thermodynamics of H₂ release and the 'kinetic' Hammett parameter to predict ΔH_{H2} .

Future work (subject to funding availability)

B-doped C:

- identify descriptors to correlate binding energy, e.g., charge, bond order, symmetry, defects.
- Investigate binding energies in BN doped C

Complex hydrides

- Investigate approaches to retain liquid phase complex hydrides to enhance kinetics and enable catalysts
- H₂ activation to convert nido to arachno

Hydrogen carriers

- Use DFT to calculate ΔH_{H2} for extremes of Hammett parameters to get slope to predict T for H₂ release from hydrogen storage materials and carriers
- Chemical compression exergonic and endothermic, e.g., $H_2CO_2 \rightarrow H_2 + CO_2$

Mandatory summary slide

B-doped C

- 1st B-doped into coronene increases binding energy (6.2 to 7.6 kJ/mol)
- 2nd B-doped on same ring actually predicted to decrease binding energy (7.6 to 5.6 kJ/mol).
- 2nd H₂ (to single B- doped coronene) slightly reduced binding energy and prefers opposite side
- **BN** ring binds H_2 more weakly then all carbon ring (6.2 to 5.5 kJ/mol)

Complex Hydrides

- Lewis base adducts lower the mp of the hydride so kinetics are significantly enhanced in the melt - need to find way to keep it a liquid throughout
- THF adduct 'stabilizes' Mg(B₃H₈)₂ intermediate still unstable (70 kJ/mol) but lower than 150 kJ/mol
- THF may act as a 'catalyst' to stabilize and transfer BH₃*THF intermediates
- Disproportion of two BH- species to make a stable and unstable intermediate provides a pathway to make unstable intermediates

Liquid carriers

■ adding negative charge to arene ring results in a lower enthalpy of H_{2/22/2018} | 26 adsorption in a <u>predictable way</u>.

Proudly Operated by Battelle Since 1965

Hydrogen Materials - Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office.

Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830.

"Hydrogen is a light, odorless gas, which, given enough time, turns into people." - Edward Robert Harrison, astronomer and cosmologist

Technical backup slides

Proudly Operated by Battelle Since 1965

Accomplishments - validation

Effect of B doping in carbon binding energy

reports over large range 5-20 kJ/mol

d = 15 Å ↓ 3.4 Å

binding energy 6.6 kJ/mol

BC₄₉H ~ 2% B

- Binding energy increases 25% with B doped into graphene (5.2 to 6.6 kJ/mol H₂)
- Distance from surface does not significantly change (3.4 Å)
- Notice that H₂ is not directly over the B
- Theory can provide insight into complex phenomena: can we learn what B is doing that increases binding energy?
- Is there a linear correlation between binding energy in coronene and graphene? (easier to do coronene – but need to know it is a good model)

B-doped coronene – which is the preferred side for binding – top or bottom?

- N.B. H₂ molecule prefers site next to B – a defect site
- Only minor difference for binding on bottom side away from 'defect'
- Where does the next H₂ go?
- What is the binding energy of 2nd H₂?

B-doped coronene – fate of 2nd H₂?

Proudly Operated by Battelle Since 1965

Does increasing B content increase binding energy?

Increase B-doping - decrease binding energy

hypothesis

Understanding roles of THF, chemical stabilization of unstable intermediates & physical role in phase change

(PNNL thanks one of last years reviewers for making the suggestion that THF can act as a shuttle)

• Stabilizing intermediates THF traps BH₃, lower energy transition state and prevents diborane formation

THF *never* makes it to gas phase moves back and forth between Mg cation and BH₃

Hypothesis for catalytic role of Lewis base for regeneration: THF helps to activate H₂

protonates B-B bond with synchronous H⁻ transfer

Mimicking Nature – understanding pathways to generate unstable (higher energy intermediates)

Disproportional (bifurcation mechanism) can lead to the formation of 'unstable' $Mg(B_3H_8)_2$. – coupled with formation of stable intermediates, e.g., $Mg(BH_4)_2$.

 $\begin{array}{l} \mathsf{B}\mathsf{H}_4 + \mathsf{B}\mathsf{H}_4 \Leftrightarrow \mathsf{B}_2\mathsf{H}_7 + \mathsf{M}\mathsf{g}\mathsf{H}_2 \\ \mathsf{B}_2\mathsf{H}_7 + \mathsf{B}_2\mathsf{H}_7 \Leftrightarrow \mathsf{B}_3\mathsf{H}_8 + \mathsf{B}\mathsf{H}_4 + \mathsf{H}_2 \end{array}$

This requires you cycle through BH₄ multiply times – two steps forward and one step back - decreases atom efficiency

¹¹B NMR of CD_3CN extract of Mg(B₃H₈)₂- THF/4MgH₂ heated 100°C in N₂, quenched after first exotherm

 $B_{2}H_{7}^{-} (lit. = -25ppm)$ Quartet with ¹H coupling 0 = 6 - 2 - 2 - 6 - 10 - 14 - 18 - 22 - 26 - 30 - 34 - 38 - 42 - 46 - 5

Add series of calculated energies to compare

new pathways: B_2H_7 looks worse than B_3H_8

Reaction	ΔE _{static} (OK) kJ/mol H ₂	ΔH _{ZPE} (0K) kJ/mol H ₂	ΔH _{ZPE} (300K) kJ/mol H ₂	ΔS (300K) J/(mol H ₂ K)	ΔG _{ZPE} (300K) kJ/mol H ₂
$3Mg(BH_4)_2 \rightarrow Mg(B_3H_8)_2 + 2MgH_2 + 2H_2$	176.3	148.7	147.9	84.9	124.2
$2Mg(BH_4)_2 \rightarrow Mg(B_2H_7)_2 + MgH_2$	214	204	202	-26	208
$2Mg(B_2H_7)_2 \rightarrow Mg(B_3H_8)_2 + Mg(BH_4)_2 + 2H_2$	-38	-56	-52	110	-85
$3Mg(BH_4)_2 \rightarrow Mg_3(B_3H_6)_2 + 6H_2$	53.6	35.3	37.9	94.3	9.7
$Mg(BH_4)_2 \rightarrow Mg(B_2H_6) + H_2$	66	47	49	93	22
$2Mg(B_2H_6) + 4H_2 \rightarrow$ $Mg(B_3H_8)_2 + 3Mg(BH_4)_2 +$ $2MgH_2$	-10	4	1	-97	30

Future work Liquid carriers – reaction calorimetry provides capability to validate concepts

- Aqueous phase mixtures of H_2CO_2 provides a potential approach for low pressure delivery and transport of H_2 .
 - Perfect thermodynamics for chemical compression
 - Smart people working on development of catalyst and methods to purify H₂ and recovery to recycle CO₂.
- Solid formates, M⁺CO₂⁻ (M = Na, K) provide a potential approach to store large quantities of H₂ - "Just add water"
 - Perfect thermodynamics for reversibility and hydrogen comes from H₂O
 - Smart people working on development of catalyst.
- Aqueous phase mixtures of PhOH/M⁺PhO⁻.
 - Can tune thermodynamics adding negative charge to arene ring results in a lower enthalpy of H₂ adsorption and corresponding decrease in 'operating temperature'
 - Developing methods to predict enthapy hydrogenation for families of LPHCs

