HySCORE: Technical Activities at NIST

Thomas Gennett (NREL)

Craig Brown, Terrence Udovic (NIST)

Presenters: Jacob Tarver and Mirjana Dimitrievska (NREL)

National Renewable Energy Laboratory & National Institute of Standards and Technology

2018 DOE Annual Merit Review: June 14th, 2018 Project ID: ST135

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

• Timeline:

- Project Start Date: October 2015
- Project End Date: TBD
- % Complete FY 18: ~65%

• Budget:

- Funding FY17: \$1,444,792
- Funding FY18: \$750,000
- Total Multi Performer Project Funding FY18: \$3.625M

Barriers

Barriers Addressed:

- A. System Weight and Volume
- O. Understanding of Hydrogen Physi- and Chemisorption

Partners

- NIST Craig Brown, Terry Udovic
- PNNL Tom Autry, Mark Bowden
- LBNL Jeff Long, Martin Head-Gordon

- NREL leads a collaborative research effort involving NIST, LBNL and PNNL
 - Seek to employ and develop characterization capabilities at each facility to understand and enhance hydrogen storage media
 - Leverage each institute's unique strengths to jointly validate hydrogen storage claims and design strategies

Relevance: Impact

- We provide neutron-scattering-based characterization of materials of interest within HySCORE and HyMARC
- Neutrons provide unique specificity towards determination of hydrogen properties
 - Enables identification of isotopically-labelled hydrogen location within complex structures
 - Enables identification of hydrogen dynamics within complex structures

Relative comparison of scattering strength for x-rays and neutrons

Approach: Neutron Scattering

- Neutron Powder Diffraction (NPD): Determine where the atoms are located
- Quasielastic Neutron Scattering (QENS): Diffusional and reorientational dynamics
- Inelastic Neutron Scattering (INS) as a sensitive probe of local structure/potential

Isotopes have different scattering powers

D₂ Coherent - 'Sees' neighbor atoms **STRUCTURE**

Approach: Neutron Scattering

- Utilize neutrons to characterize and validate hydrogen storage media
 - Neutron powder diffraction with precise D₂ loading at T > 4
 K and P < 100 bar
 - Elucidate crystal structure of storage materials
 - Harness isotopic sensitivity of elastically scattered neutrons to locate chemi- and physisorption sites of deuterium
 - Inelastic and quasielastic neutron spectroscopy with precise H₂ loading at T > 4 K and P < 100 bar
 - Harness isotopic sensitivity of inelastically and quasielastically scattered neutrons to identify local environment for complex hydrides and chemi- and physisorbed hydrogen

Accomplishments: Mg(BH₄)₂·xTHF

Accomplishments: Mg(BH₄)₂·*x*THF INS

- Calculated NVS spectra are in good agreement with the experimental results.
- For Mg(BH₄)₂·3THF, sharp additional peaks attributed to discrete BH₄⁻ librational modes are observed near 500 cm⁻¹, which are unlike the more smeared out modes in α-Mg(BH₄)₂.
- Intensity decrease for the samples containing TDF (efficiently canceling the solvent scattering)

Red shift in the band energies of the BH₄librational and bending modes with increasing THF concentration as a result of changes in the bond lengths and force constants.

Accomplishments: Mg(BH₄)₂·*x*THF QENS

- Orientational mobilities of the BH₄⁻ anions: not sensitive to the amount of THF or TDF present (compare well with the mobilities of BH₄⁻ anions in unsolvated material)
- An abrupt change in the speed of the BH₄⁻ anions is observed at around 200 K (correlated with the phase change)

9

Accomplishments: Mg(BH₄)₂·*x*THF NPD

- An abrupt change in the speed of the BH₄⁻ anions is observed at around 200 K (correlated with the phase change)
- NPD patterns measured at different temperatures point to a phase transition occurring around 180 K
- High temperature structure has not been resolved

Accomplishments: MSiH₃

Anion jump correlation frequencies τ_1^{-1} vs. inverse temperature for MSiH₃

- Continuation of the study on MSiH₃, which will focus on the dynamics on the SiH₃- group in the low-temperature and high temperature phase
- The experiments were done on three different instruments (NSE, HFBS and DCS) extending the explored mobility range from 10^7 to 10^{12} s⁻¹.
- Dynamically distinct transitional state was observed upon transition from α-phase to β- phase, and vice versa. Future work will focus on the structural characterization (NPD) of this intermediate phase.
- This is an example of how dynamical measurements seem to predict an intermediate phase not yet observed by diffraction.

Phase diagram of CsSiH₃ made from the QENS analysis.

Accomplishments: High-pressure H₂ Storage in MOFS

- D₂ locations and compositions in Co₂(*m*-dobdc) probed at 77-298 K and 30-80 bar.
- D₂ content correlates with the lowtemperature structures.
- Hydrogen content from NPD data matches the adsorption isotherm uptake values.
- Paper submitted: Berkeley/LBNL/NIST

Volumetric adsorption isotherm for H_2 uptake in $Co_2(m-dobdc)$ at 198 K compared to total H_2 uptake based on NPD data.

Accomplishments: LiBH₄ in N-doped Carbon Scaffolds

- With E. Majzoub (U. Missouri-St. Louis), PhD student C. Carr
- Studying the effect of nanoconfinement on the thermodynamics and kinetics properties of hydrogen storage materials

Comparison of orientational BH₄⁻ mobility for the Ndoped (NCMK-3, 5nm pore) and undoped (CMK-3, 3.5nm pore) nanoporous carbon scaffolds

- NVS measurements show infiltration of LiBH₄ into all nanopore geometries.
- Some differences in the orientational mobility/activation energy
- The most N-doped scaffold (N-CMK-3) shows lower average mobility.

Responses to Previous Year Reviewers' Comments

• This project was not reviewed last year

Collaborations

• NREL/NIST collaboration

Characterizing ultra-microporous materials using neutron diffraction and neutron spectroscopy

• NREL/NIST collaboration with LBNL

- Characterizing hydrogen adsorption in metal organic framework materials using neutron diffraction and neutron spectroscopy
- Characterizing various hydrogen storage materials at the Advanced Photon Source

• NREL/NIST collaboration with PNNL

- Developing spectroscopic signatures for $Mg(BH_4)_2 \cdot xTHF$
- NREL/NIST collaboration with LLNL and SNL
 - MgB₂/MgBH₄ hydrogenations/dehydrogenations
 - \circ Catalytic dissociation of H₂/D₂

NREL/NIST collaboration with EPFL

- Characterizing new open-metal MOFS based on benzenetristriazolate and triazine-derivative ligands
- Characterizing effect of induced framework polarization on hydrogen adsorption in zeolitic imidazolate frameworks

Future Work and Challenges

- Finish QENS measurements on Mg(¹¹BH₄)₂·xTHF and Mg(¹¹BH₄)₂·xTDF materials (HySCORE)
- INS/QENS on MgB₂/MgBH₄ hydrogenations/dehydrogenations (HyMARC)
- Explore catalytic dissociation of H_2/D_2 using INS (HyMARC)
- Continue NPD/INS characterizations of new MOF materials (HySCORE)
 - Cu(I) MOF (Long)
 - V(II) MOF (Long)
 - Benzenedipyrazolate frameworks
 - Pore-opening frameworks
 - Develop 2 kbar H₂ pressure cell

Any proposed future work is subject to change based on funding levels

Summary

- Mg(BH₄)₂·xTHF Structure and Dynamics
 - NPD/INS/QENS measurements are complete
 - Analysis ongoing, manuscript anticipated soon
- MSiH₃ Dynamics
 - QENS probed mobilities across 10⁷-10¹¹ s⁻¹ range
 - Phase diagram developed
- High-pressure H₂ Storage in MOFS
 - NPD measurements are complete
 - Manuscript has been submitted
- LiBH₄ in N-doped Carbon Scaffolds
 - \circ N-doping shown to suppress BH_4^- orientational mobility

Technical Backup Slides

Technical Slides: Sample preparation

- Samples activated by slowly heating to predetermined temperature in tube furnace under dynamic vacuum (~10⁻⁷ torr)
- Samples transferred to He-filled dry box with < 0.1 ppm H₂O and < 5 ppm O₂ and sealed in vanadium or aluminum sample cells
- Gas dosing sample cell permits delivery of D_2/H_2 to sealed sample
- Samples mounted onto closed cycle refrigerator
- Samples connected to gas delivery manifold of known volume when dosing with D_2/H_2
- Residual He removed using turbo molecular pump

Technical Slides: Neutron Powder Diffraction

- High resolution neutron powder diffraction data collected at 7 K using a Ge(311) monochromator with an in-pile 60' collimator
 - Instrument: BT1
 - \circ Corresponds to λ = 2.078 Å
- Initial measurements collected on evacuated bare sample
- Volumetric gas dosing of D₂ performed above 20 K with incrementally increasing amounts
 - Full adsorption ensured by letting pressure fall to zero
- Sample cooled as low as 7 K for measurement

Technical Slides: Inelastic Neutron Spectroscopy

- Inelastic neutron spectra collected using the Filter Analyzer Neutron Spectrometer (FANS)
- Residual He removed using turbo molecular pump
- Spectra collected below 10 K using pyrolytic graphite (002) and Cu (220) monochromators
 - Covers an energy range of 4.1 250 meV, resolution up to 1.1 meV
- Volumetric gas dosing of H₂ performed above 20 K with incrementally increasing amounts
 - Full adsorption ensured by letting pressure fall to zero
- Sample cooled below 10 K for measurement

Technical Slides: Quasielastic Neutron Spectroscopy

- Quasielastic neutron spectra collected using 3 complementary spectrometers:
 - NGA Neutron Spin Echo Spectrometer (NSE)
 - $-10^{-3} 10^2$ ns time scales, 0.2 1.8 Å⁻¹ Q range
 - High-Flux Backscattering Spectrometer (HFBS)
 - − 10⁻¹ − 10 ns time scales, 0.25 − 1.75 Å⁻¹ Q range
 - Disk Chopper Spectrometer (DCS)
 - $-10^{-4} 1$ ns time scales, 0.1 6 Å⁻¹ Q range
- Volumetric gas dosing of H₂ performed above 20 K with incrementally increasing amounts
 - Full adsorption ensured by letting pressure fall to zero
- Temperature varied from 4 K to 680 K for measurement

