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Overview

Timeline
• Project Start Date: June 12, 2017
• Project End Date: March 11, 2018
• Percent Complete: 100%

Budget
• Total Project Budget: $149,999

– Contractor Share: $0
– Federal Share: $149,999

• Funds Spent: $149,999

Barriers Addressed
• 100% Reaction Conversion of 

LiH to H2

• Passively Controlled H2 Gas 
Evolution over 15 Minutes

• Reduced cost from $391 to $83

Partners
• US DOE: Project Sponsor and 

Funding
• Skyhaven: Technical R&D
• Champlain College: Financial 

Modeling and Commercialization 
Planning

2



Market Need

• A common concern for fuel cell vehicle operators is running out 
of hydrogen fuel
– Sparse hydrogen filling stations
– Operators can experience range anxiety 
– This lessens the appeal of these vehicles hindering their 

commercialization 
• To overcome this shortfall, the DOE is interested in developing 

emergency hydrogen refuelers
– Similar in concept to keeping a can of gas in the trunk
– Compact and lightweight H2 storage unit that can be stored 

in the vehicle trunk
– Can be safely and reliably operated by the driver
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Value Proposition

• To meet this market need, a H2 gas refueler is being developed
• Skyhaven’s refueler product goals

– Provides 0.75 kg (1.7 lb) of hydrogen fuel
– Refills the vehicle within 15 minutes
– Is activated with water giving it a long storage lifetime 
– Mass of 10 kg (22.8 lb) that includes the activating water
– Compact space of 11 liters (0.4 ft3)
– No moving parts helping to increase reliability
– Material cost budget of $391 in low production volumes

• With this product, the average fuel cell vehicle will have a 50 
mile range enabling the operator to reach a hydrogen refueling 
station 
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The Innovation

• Store lithium hydride powder in a hermetically sealed vessel
• When this chemical hydride is exposed to water vapor, it 

releases hydrogen gas instantaneously
– LiH + H2O  H2 + LiOH

• Use a network of water conduits placed throughout a packed 
bed of lithium hydride to shuttle liquid water
– Liquid water pervaporates through the conduits introducing 

water vapor to the LiH particles
• Use hydrophilic micro-wick additives within the LiH to further 

disperse water to all LiH particles giving 100% reaction yield
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Water Activation of LiH to Release H2 Gas:
Vapor Versus Liquid Feed

• Ideal scenario
– React all LiH

within 10-15 
minutes

– Maintain bed 
temperature less 
than 100°C using 
water vapor feed

– Liquid water for 
bootstrapping

80°C H2O Vapor – LiH Reaction

100% LiH Conversion
Reasonable bed temperature
However this takes too long

Direct Liquid H2O  – LiH Reaction

Fast 100% LiH Conversion
However high 300°C bed temperature 
potentially unsafe

100% LiH Conversion in 15 minutes

Reasonable 100°C bed temperature

Ideal Scenario
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Top Phase I Technical Challenges
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A : Maximizing the water vapor transport rate through the conduits
B:  Maximizing the distance that water vapor can transport into the LiH bed
C:  Overcoming LiOH films that hinder water transport to LiH particles
D:  Introducing liquid water into the conduits without pumps
E:  System engineering – start up, heat removal, H2 purity, 

reliability, refueler design, cost7



Technical Challenge A:
Maximize the Water Vapor Rate Through the Conduits

• Fabricate water feed conduits that are dispersed throughout the LiH
packed bed

• Choose conduit materials and design to minimize their size (and 
cost) while enabling water pervaporation through them

25°C

60°C

80°C

• Miniaturized tubular conduits produced operating at 80-100°C that 
maximize the water vapor transmission rate into the LiH bed8



Technical Challenge B&C:
Maximize the Water Vapor Distance Through the LiH Bed

68.8%

90%

100%

Hardware Permeation Max• Want water vapor to diffuse 
through long distances of LiH
particles (and through LiOH films)

• This minimizes the number of 
water conduits and maximizes the 
amount of LiH

• Incorporate wick additives into 
LiH to shuttle water

• Increasing percentage of wick additives
– Enables deeper water penetration 

into the LiH bed
– Enables 100% LiH conversion in 

reasonable time periods (15 min)
– However, compromises LiH

content 
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Technical Challenge D:
Introducing Liquid Water into the Conduits

• Hydrogen refueler needs to use a gravity water-fed 
delivery system (no pumps)

• Challenge is getting liquid water to fill the 
miniaturized conduits quickly once activated

• Gravity fed operation shows similar behavior to pumping water through the 
conduits

• Room temperature gravity-fed water supply to a single cell 
achieved a reaction completion of 79%10



Technical Challenge E:
Starting the H2 Refueler

• User activates refueler via turning a 
valve that gravity feeds water to the 
conduits

• Want 80-100 °C internal refueler 
temperature quickly as possible
– This significantly increases the 

water vapor transport rate
• Since direct liquid water-LiH contact 

immediately releases heat, consider 
using a limited number of direct 
liquid water-LiH conduits to bootstrap 
the reactor

Limited liquid water-LiH interaction gives 
controllable reaction

Water 
Vapor 
Conduits

Liquid 
Water 
Conduit11



Technical Challenge E:
Heat Removal

• Heat of reaction:

• A refueler with 750 g of H2 requires 2976 g LiH
• Total energy released: -58,134.6 kJ
• Assume refueler is designed to dispense H2 over a 10 minute 

period
– Total heat released is: -96.9 kW

• Heat release calculations show importance of a controlled water 
delivery system to minimize heat generation and subsequent 
heat removal requirements

• Use internal heat transfer fins coupled to external fins for cooling

∆𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 =  ∆𝐻𝐻𝐿𝐿𝐿𝐿𝐿𝐿𝐻𝐻° + ∆𝐻𝐻𝐻𝐻2
° − ∆𝐻𝐻𝐿𝐿𝐿𝐿𝐻𝐻° − ∆𝐻𝐻𝐻𝐻2𝐿𝐿

°  

∆𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅 =  −155.3
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿𝐿𝐿𝐻𝐻 
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Technical Challenge E:
H2 Purity

• SAE J2719 – Hydrogen Fuel Quality Specification
– Hydrogen lower limit of 99.97%
– Water upper limit of 5 ppm

• Refueler will require a bed of silica gel to get below water threshold 
• Gas chromatography has shown that no other by-products are 

produced from the reactor 
– Oxygen and nitrogen presence from fitting leak

O2

H2

N2
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Technical Challenge E:
Refueler Material Reliability

• Examined material compatibility of LiH, 
conduits, and wick additives

– Determine if material interactions 
degrade the refueler in storage

• 12 reactors initially fabricated with 0.9 
grams of LiH containing conduits and 
wick additives

• 2 reactors activated each month 
measuring the H2 flow rate

• Reliability studies have shown that there 
are no material compatibility issues with 
the refueler

• H2 is generated after months of storage 
proving LiH is maintaining its reactivity 
during storage

• Differences in performance are 
attributed to LiH/wick additive packaging 
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Technical Challenge E:
Refueler Design

• Repeatable units forming individual 
compartments
– e.g., compartments comprised of five water 

delivery conduits with a single direct water 
feed conduit in the middle to bootstrap 

• Compartment walls serve as the internal heat 
exchanger fins 

• External fins for ambient convection thermal 
management

Water 
Vapor 
Conduits

Liquid 
Water 
Conduit
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Technical Challenge E:
Refueler Design Shows Scalability

• Single conduit, 1.5” long
• 0.9 g LiH
• 7.3 ml H2/min/in conduit

• 4 conduits, 6.0” long
• 3.0 g LiH
• 11.7 ml H2/min/in conduit
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Technical Challenge E:
Refueler Design for a H2 Fueling Nozzle

• Approach
– Injection plastic molded 

nozzle
– One-time use device
– Mimic nozzle design from 

refueler stations
– 5’ plastic hose from 

refueler to nozzle
• Phase II design effort
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Technical Challenge E:
Reducing the Material Cost Less than $391

• Main material cost drivers are the conduits and LiH
• Phase II material cost expectation of $83 in relatively low 

procurement volumes
• Supports a H2 refueler sale price of $150-200

Component
Bulk Price Qty Price Unit Qty Cost Qty Unit Price Cost

HX Fins $77.25 12" x 1000' $0.00054 in2 1764 $0.95 1764 $0.00054 $0.95
Housing $110.71 24" x 50' $0.0077 in2 294 $2.26 294 $0.0077 $2.26
Additives $65.60 500 g $0.13 g 150 $19.68 150 $0.13 $19.68
Water Conduit $152.00 1500' $0.10 ft 1500 $152.00 143 $0.010 $1.45
Lithium Hydride $16.00 1000 g $0.016 g 3000 $48.00 3000 $0.016 $48.00
Dessicant $66.88 230,350 in3 $0.00029 in3 5 $0.00 5 $0.00029 $0.00
Plastic Valve $6.69 1 $6.69 1 $6.69 1 $6.69 $6.69
Plastic Hose $1.75 1 $1.75 1 $1.75 1 $1.75 $1.75
Plastic Nozzle $2.00 1 $2.00 1 $2.00 1 $2.00 $2.00

Total $233.33 $82.78

Phase I H2

Unit Pricing Refueler Material Cost
Phase I Pricing Phase II Expected H2

 Refueler Material Cost
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Technology Status Today

• Phase I DOE program has shown the technical feasibility of the 
hydrogen refueler
– Demonstrated mechanisms to gravity feed water to the conduits
– Showed conduits and operational methods that increase the water 

vapor transport rate through the conduits
– Showed using wick additives to increase the depth that water can 

diffuse through LiH and LiOH toward 100% LiH conversion
– Demonstrated using a limited number of liquid water-LiH cells to 

bootstrap the reactor to 80 °C
– Showed that only H2 and water exit the refueler where a desiccant 

will adsorb the water before filling the fuel cell vehicle
– Demonstrated material compatibility over 9 months supporting a 

long storage shelf life
– Examined scale up using compartmented zones for heat removal 

and safe operation
– Showed low material cost projections of $83
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H2 Refueler Technology into the Future

• DOE SBIR Phase II Program will be used to focus on further 
development of technology including:
– Improving water conduit permeation and cost reduction via 

investigation into new materials and designs
– Continued scaling of reactor to higher H2 flow rates by increasing 

number of water conduits
– Optimize design of water delivery system and thermal management
– Investigate manufacturing requirements of various refueler 

components
– Produce and demonstrate a 750 g H2 refueler
– Work with DOE/industry partners to obtain refueler specifications

Any Proposed Future Work is Subject to Change Based on Funding Levels
20
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