

HyMARC Seedling: ALD (Atomic Layer Deposition) Synthesis of Novel Nanostructured Metal Borohydrides

Steven Christensen, co-PI, presenter National Renewable Energy Laboratory Karl Gross, co-PI H2 Technology Consulting June 14, 2018

DOE Hydrogen and Fuel Cells Program 2018 Annual Merit Review and Peer Evaluation Meeting

Project ID # ST143

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

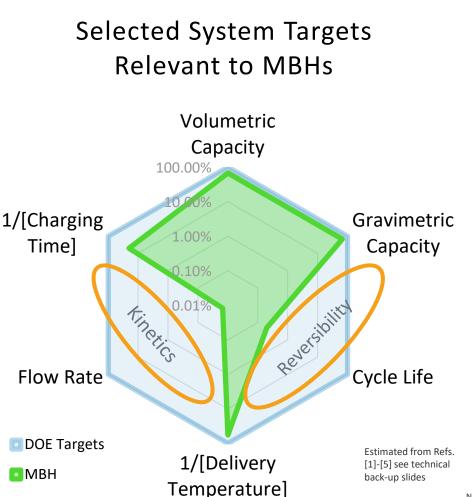
Timeline and Budget

- Project start date: 9/15/2017
- Project end date: 9/30/2018⁺
- Total project budget: \$278k
 - Total recipient share: \$153k
 - Total federal share: \$250k
 - Total DOE funds spent*: \$168k

*As of 3/31/18 [†]Phase I; Phase II (proposed)

Barriers

- **D** Durability/Operability
- **E** Charging/Discharging Rates
- **O** Lack of understanding of hydrogen chemisorption


Partners

• H2Tech Consulting (cost share)

Relevance

Metal borohydrides (MBHs) such as Mg(BH₄)₂ possess a high hydrogen storage capacity, but absorption and release of hydrogen is slow and has poor reversibility.

- Project objectives: improve *reversibility* and *kinetics* of hydrogen absorption and release for Mg(BH₄)₂
- *Reversibility* addresses Barrier **D**. Goals:
 - Increase H₂ cycling
 - Reduce cycling temp.
- *Kinetics* addresses Barrier
 E. Project Goals:
 - Increase H₂ delivery (Flow rate, Temp.)
 - Reduce H₂ charging time

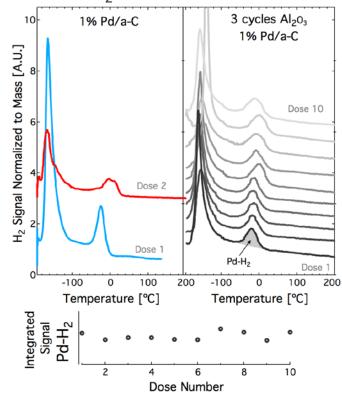
Approach

Concept: Improve hydrogen uptake and release <u>kinetics</u> and <u>reversibility</u> by:

- Decrease hydride particle size to Increase diffusion and reaction rates.
- 2) Coat particles to maintain separation and short reaction distances.
- 3) Coat with monolayer catalysts to enhance reaction rates.
- 4) Maintain high storage capacity by creating atomically thin coatings.

How: Encapsulate MBHs via atomic layer deposition with:

Protective Matrix Layer (PML). Retain nanostructured MBH phase. (Reversibility) **Kinetic Matrix Layer (KML).** Enhance H₂ processes w/chemical additives. (Kinetics)

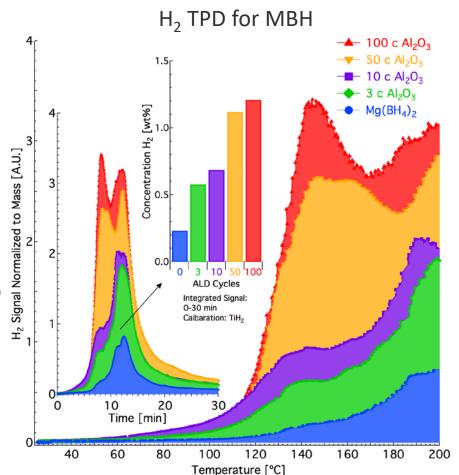

ALD coatings have improved the physical and chemical properties of other nanostructured architectures. Similar benefits will be realized for MBHs.

Approach: Milestones

Milestone	Description (as of 03/31/18)	Complete
MS 1.2.1	(1) Dehydriding/hydriding cyclability over 3 cycles; (2) H_2 desorption will be tested at 200 °C against initial vacuum for a 24 h period; (3) H_2 absorption will be tested at 280 °C, 120 bar H_2 overpressure, and 24 h. Materials characterization will be performed to help identify structure-property relationships. (XRD, TEM, NMR, etc.)	100 %
MS 2.1.1	H_2 storage testing will be performed to demonstrate ALD AI_2O_3 coatings on nanostructured Pd (1wt%Pd/activated carbon) to enhance cyclability. TPD measurements will be performed to show consistent H_2 uptake/delivery over 5 cycles after heat treatments exceeding 400 °C.	100 %
MS 2.2.1	H_2 storage testing will be performed to demonstrate ALD AI_2O_3 coatings on nanostructured $Mg(BH_4)_2$ to enhance cyclability for 3 cycles. H_2 desorption will be tested at 200 °C against initial vacuum for a 24 h period. H_2 absorption will be tested at 280 °C, 120 bar H_2 overpressure, and 24 h.	100 %
MS 3.1.1	MgB_2 and $Mg(BH_4)_2$ will be coated with Al_2O_3 , TiO_2 and CeO_2 by ALD and tested for H_2 adsorption to show improved hydriding temperatures, pressures, and kinetics. H_2 absorption at 200, 250, and 280 °C will be performed at 120 bar H_2 overpressure.	25%
Go/No-Go	A functional ALD encapsulation of Mg(BH ₄) ₂ will demonstrate a majority of the following significant hydrogen storage improvements: (1) Dehydriding/hydriding cyclability over 3 cycles; (2) 3 wt% H2 delivery at 200 °C; (3) 3 wt% uptake at 280 °C and 120 bar H ₂ overpressure; (4) a 5x improvement in Dehydriding and Hydriding kinetics when compared to bulk Mg(BH ₄) ₂ under the same conditions and same initial material (particles size, purity, manufacturer, etc).	25%

A&P: Enhanced thermal cyclability of $Al_2O_3/nano-Pd$

- ALD Al_2O_3 /nano-Pd:
 - Temperature Programmed Desorption (TPD)
 - Nano-Pd: 1% Pd dispersed on activated carbon (1%Pd/a-C)
 - Thermal cycling: 450 °C,
 Dose H₂ at 23 °C
- Pd-H₂ signal at ~0 °C remains constant over many cycles for ALD coated material


 $\rm H_2$ desorption after thermal cycles for 1%Pd/a-C: uncoated and 3 ALD cycles of $\rm Al_2O_3$. The integrated signal for the Pd-H2 peak is plotted versus the $\rm H_2$ dose number.

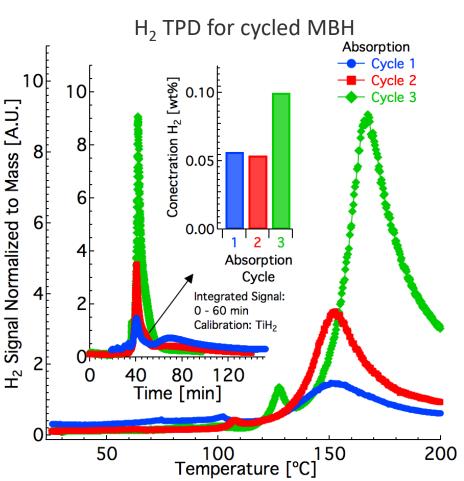
We demonstrated a functional PML coating of Al_2O_3 on nano-Pd that is permeable to H_2 and improves durability/cyclability.

H₂ TPD for nano-Pd

A&P: Temperature programmed desorption Hydrogen desorption of Al₂O₃/Mg(BH₄)₂

- TPD for a series of ALD Al₂O₃/nano-Mg(BH₄)₂: 3, 10, 50, 100 cycles
- ALD coatings reduce desorption temperature: 140 °C
- Time-integrated TPD signal shows increased H₂ desorption with increasing ALD
- Control sample (not shown): No significant H₂ desorption from ALD Al₂O₃ film only
- Reversibility is qualitatively demonstrated with a PML
- TPD data is normalized to mass

The PML coating of Al_2O_3 on nano-Mg(BH₄)₂ shows enhanced desorption that suggests improved kinetics for H₂ delivery (flow rate, temperature).

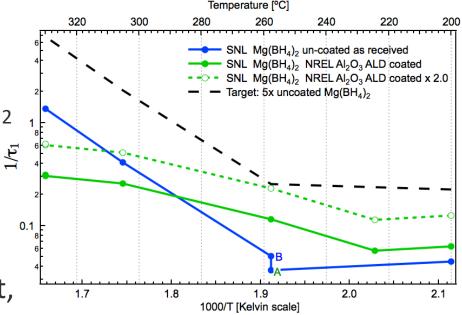

MBH provided by Sandia National Laboratory

MS

2.2.1

A&P: Hydrogen reversibility of $Al_2O_3/Mg(BH_4)_2$

- ALD Al₂O₃/nano-Mg(BH₄)₂ cycled (3x) between:
 - TPD
 - Absorption, 120 bar H₂,
 285 °C, 24 h
- Reversibility is qualitatively demonstrated with a PML
- H₂ desorption increases after each absorption cycle
- Increased desorption at each cycles indicates that the PML leads to enhanced H₂ uptake.


We demonstrated a functional PML coating of Al_2O_3 on nano-Mg(BH₄)₂ with reversible H₂ absorption and desorption.

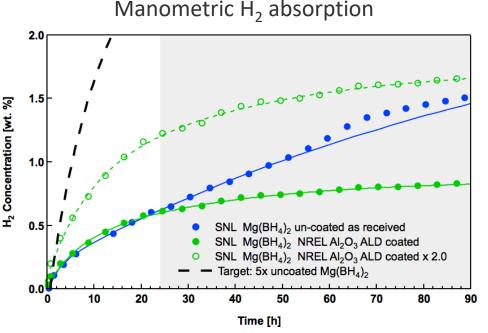
MBH provided by Sandia National Laboratory

A&P: Quantitative measurements of H₂ desorption kinetics

- Desorption measured by manometric method for Al₂O₃/Mg(BH₄)₂ and uncoated MBH
- H₂ capacity for coated Mg (BH₄)₂ about ½ of uncoated MBH as expected.
- Desorption rates (≈1/τ₁) are faster for Coated MBH at low temperatures.
- Based on active material weight, kinetics are projected to be 2x better for Al₂O₃/Mg(BH₄)₂ than uncoated MBH.

Arrhenius desorption plot

Data from fits to raw kinetics obtained with PCT (technical backup slides) and tested at milestone criteria.


Intrinsic desorption kinetics, on Mg $(BH_4)_2$ weight basis only, are significantly better for Al_2O_3 coated MBH at T < 305°C.

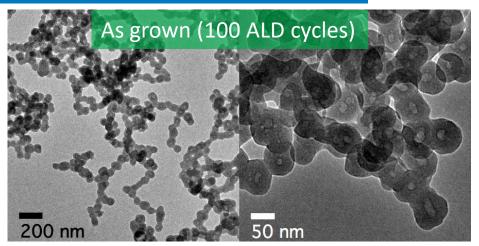
MBH provided by Sandia National Laboratory

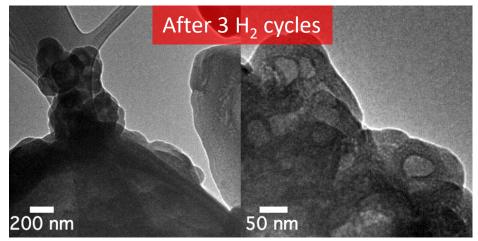
A & P: Measurement of H_2 absorption for Al₂O₃/Mg(BH₄)₂

MS 2.2.1

- First PCTPro H₂ absorption after desorption for Al₂O₃/Mg(BH₄)₂ and uncoated MBH.
- Intrinsic absorption kinetics (on MBH weight basis only) are significantly better for Al₂O₃/Mg(BH₄)₂ under first 24h period (milestone conditions).
- H₂ uptake capacity are > 1.2wt.% in first 24h indicating only partial re-hydriding under these conditions.
- Based on active material weight, kinetics are projected to be 2x better for Al₂O₃/Mg(BH₄)₂ than uncoated MBH.

Data from fits to raw kinetics (technical back-up slides) obtained with PCT and tested at milestone criteria.

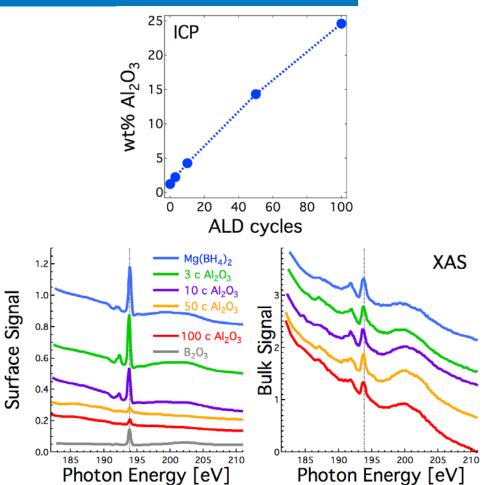

ALD coating improves H₂ reversibility due to increased desorption and absorption kinetics. Improved reversible capacity can be addressed through coating thickness.


MBH provided by Sandia National Laboratory

A&P: Characterizing the Materials Architecture

Transmission electron microscope (TEM) images show:

- Nanoparticles encapsulated with a shell structure
- Core/shell structure is retained after 3 cycles:
 - H₂ desorption 200 °C, vacuum, 24 h
 - H₂ absorption , 280 °C, 120 bar H₂, 24 h
- H₂ cycling condenses open, dendritic coreshells


We show a PML architecture of Al₂O₃/nano-Mg(MBH₄)₂ with conformal encapsulation that is retained after H₂ desorption/absorption cycling.

MBH provided by Sandia National Laboratory

MS 1.2.1

A&P: Characterizing the Materials Composition

- Linear mass uptake of Al₂O₃
- H₂ capacity measurement:
 Inactive material ~ 50%
- X-ray absorption spectroscopy (XAS):
 - $-B_2O_3$ at MBH interface
 - Constant bulk signal vs.
 decreasing surface signal

ALD of Al_2O_3 grows linearly on Mg(MBH₄)₂ with a B_2O_3 -like interface.

Concentration

 $Mg(BH_4)_2$

0.6

0.5

0.4

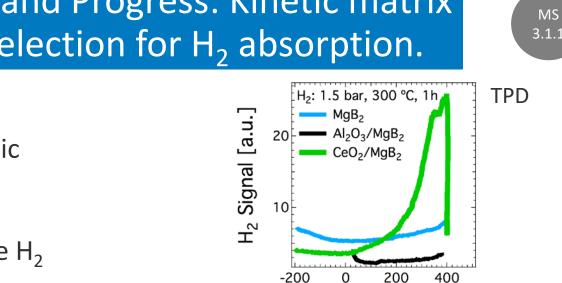
0.3

0.2

0.1

0.0

116


112

108 Time [h] PCT

Accomplishments and Progress: Kinetic matrix layer materials selection for H₂ absorption.

- ALD CeO₂ on MgB₂ is investigated as a kinetic matrix layer for H₂ absorption.
- TPD after low pressure H_2 treatment indicates H₂ absorption due to CeO_2 . (1.5 bar H₂, 300 °C, 1 h)
- H_2 uptake quantified (1.3) wt%) for high pressure hydrogen absorption (100 bar, 390 °C, 116h)

We quantify H₂ update on MgB₂ using CeO₂ as part of a kinetic matrix layer for H₂ absorption.

400

340

320

300

280

100

104

Temperature [°C]

1.3 wt% H₂

101 100 ົວ Pressure [bar] 99 **Femperature** 98 |-97 96 95 94

Collaboration and Coordination

- H2 Technology Consulting LLC, partner, subcontractor, industry, works with DOE Fuel Cell Technologies Office (FCTO)
 - Essential partnership that provides quantitative measurements and subject matter expertise; daily interactions
- HyMARC EMN, DOE FCTO
 - Key collaborator that provides nanostructured MBH, materials characterization, theory, and subject matter expertise; weekly interactions
- HyMARC HySCORE, DOE FCTO, Federal Laboratory
 - NREL: Key collaborator that provides materials characterization, equipment, facilities, subject matter expertise; daily interactions
 - PNNL: Collaborator that provides advanced materials characterization and subject matter expertise; biweekly interactions
- HyMARC Support DOE FCTO, Federal Laboratory
 - SLAC: Advanced synchrotron measurements: X-ray emission spectroscopy, X-ray Raman scattering at 100 bar H₂

Remaining Challenges and Barriers

- Increase the H₂ desorption kinetics for ALD coated materials beyond the result demonstrated. Goal: 5x increase over uncoated MBH.
- Accurately determine the mass loading of ALD coatings to validate the performance improvements.
- Increase the quantity of H₂ adsorbed to show improved reversibility. Goal: 3 wt%.
- Identify a chemical additive that performs best as a KML and in cooperation with the PML improvements.

Develop a functional ALD encapsulation of $Mg(BH_4)_2$ will demonstrate:

- (1) Dehydriding/hydriding cyclability over 3 cycles;
- (2) 3 wt% H2 delivery at 200 °C;
- (3) 3 wt% uptake at 280 °C and 120 bar H₂ overpressure;

(4) 5x improvement in dehydriding and hydriding kinetics.

Any proposed future work is subject to change based on funding levels.

Technology Transfer Activities

- Subcontract with H2 Technology Consulting LLC, a small business developing hydrogen storage technology
- Conducted early stage discussions and obtained a letter of support from ForgeNano, a start-up developing ALD processes for powders at industrial scale
- Provisional patent filed: "Nanostructured Composite Metal Hydrides", USPTO Application No. 62/507,354.

Summary

- ALD encapsulation with a protective layer (Al₂O₃) improves H₂ absorption and desorption kinetics.
 - This is validated in two ways from temperature programmed desorption and PCT.
 - Improvements to desorption kinetics (determined on a total mass basis) indicate that ALD coated MBH releases more H_2 at a given temperature despite having a lower H_2 capacity.
 - Improvements to absorption kinetics are encouraging.
- ALD encapsulation with Al₂O₃ improved reversibility of hydrogen cycles with respect to improved kinetics with moderate H₂ cycle capacity.
- Demonstrated a fully encapsulated architecture of $Al_2O_3/Mg(BH_4)_2$.
- All of the results are based on the first attempts at both materials synthesis and measurement which is encouraging for the next steps.

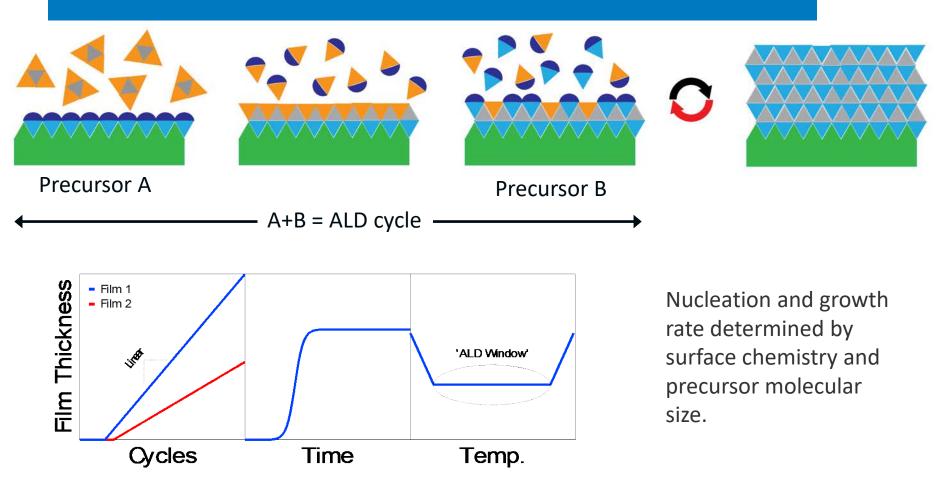
Deliverable Summary Table *	Goal	Status
H ₂ Cycles	3	3
H ₂ Desorption: wt% / kinetics	3 / 5x / 200 °C	1.5 / 2x
H ₂ Absorption: wt% / kinetics	3 / 5x / 285 °C	1.2 / 2x

*24 h period, desorption @ vacuum/200 °C, absorption @ 120 bar H_2 , 285 °C

Thank You

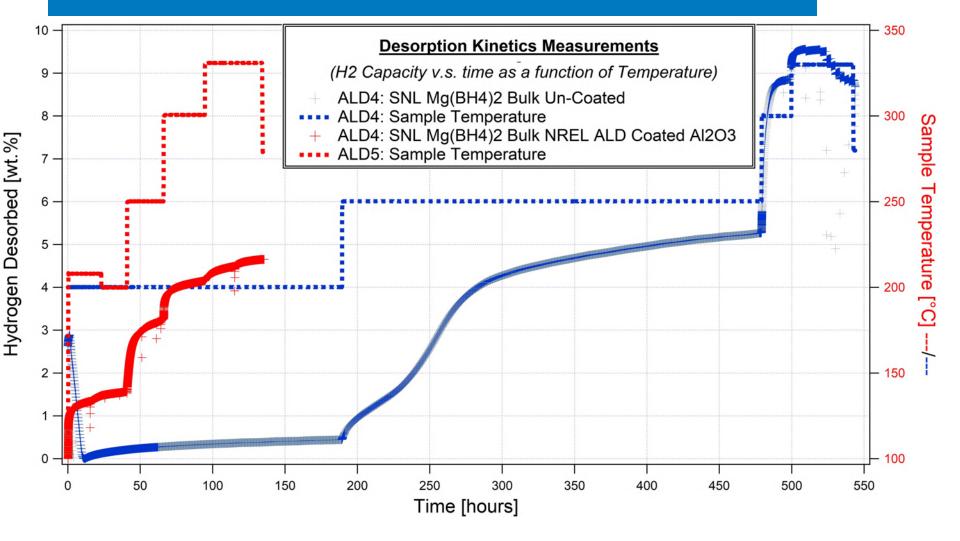
www.nrel.gov

Publication Number

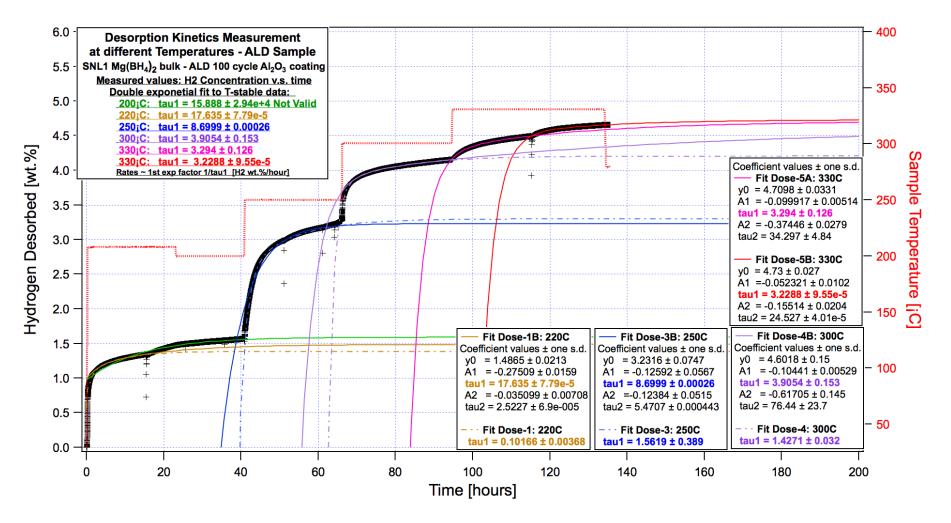

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Back-Up Slides

(Include this "divider" slide if you are including back-up technical slides [maximum of five]. These back-up technical slides will be available for your presentation and will be included in Web PDF files released to the public.)


Atomic Layer Deposition

Operating principles:


- ALD: sequential, self-limiting reactions at a surface
- Linear growth rate, saturating precursor adsorption, temperature-defined process window

H₂ desorption data

 PCT data for H₂ desorption data for MBH materials. ALD: 100 cycles Al₂O₃ / Mg(BH₄)₂. MBH provided by Sandia National Laboratory

H₂ desorption data analysis for ALD coated MBH

Fitting analysis of PCT data H₂ desorption to extract Arrhenius rate constants. ALD 100 cycles $Al_2O_3 / Mg(BH_4)_2$. MBH provided by Sandia National Laboratory NREL | 24