Project ID # st145

HyMARC Seedling Super Metallated Frameworks as Hydrogen Sponges

P. I. – Prof. Omar Yaghi Presenter – Sophia Steffens University of California, Berkeley June 14th, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Overview

Timeline

- Project Start Date: 09/1/2017
- Project End Date: 08/31/2018
- Percent Complete: 50%

Budget

- FY17 DOE Funding: \$250,000
- FY18 Planned DOE Funding: \$370,000 (assumes Go decision)
- Total DOE Funds Received to Date: \$250,000

Partners

- Lawrence Berkeley National Lab
- National Renewable Energy Lab

Technical Barriers

A metal-organic framework provides an ideal platform for H_2 storage *via* physisorption due to the following characteristics:

- High porosity and interaction strength lend to material efficiency
- Stability at ambient temperature and low pressure indicate durability/operability
- Facile kinetics ensure practical charging/discharging rates

Relevance to DOE Objectives

Project Objective: We aim to produce a H_2 adsorbent capable of exceeding the 2025 DOE system targets of 40 g/L and 5.5 wt% under ambient conditions.

Motivation	Metric	Ultimate DOE Target
Improve material efficiency by increasing physisorptive capacity.	Gravimetric capacity	0.065 kg H ₂ /kg system
	Volumetric capacity	0.050 kg H ₂ /L system
Meet durability/operability standards for H ₂ storage under ambient conditions.	Temperature	-40 to 60°C
	Operational Life Cycle	1500 cycles
	Onboard efficiency	90%
Quantify kinetics to validate practical charging/discharging rates .	System fill time (5 kg)	3-5 min
	Minimum full flow rate	0.02 (g/s)/kW

Approach

Use of a super metallated framework as a high capacity H_2 adsorbent \geq

- 1. Design a MOF to achieve high H₂ adsorption properties.
- 2. Synthesize and postsynthetically modify material to install open metal sites.
- Use advanced characterization to quantify H₂ adsorptive capacity and provide feedback on material design.

Open metal site Additional open metal

Synthesis of an organic linker for introduction of open metal sites via post synthetic modification (Milestone 1.2.1)

Synthesis of isoreticular MOF-74, Mg-IRMOF-74-III-(CH₂NH₂)₂ (Milestone 1.2.1)

Post-synthetic modification of Mg-IRMOF-74-III-(CH₂NH₂)₂ will enable installation of open metal sites (Milestone 2.2.1)

Material characterization by powder x-ray diffraction (PXRD) and N_2 \geq isotherms (Milestone 2.2.1)

Experimental PXRD patterns of functionalized Mg-IRMOF-74-III- $(CH_2NH_2)_2$ in comparison with simulated patterns of Mg-IRMOF-74-III-(CH₂NH₂)₂.

N₂ adsorption-desorption isotherms at 77 K with adsorption and desorption points represented by closed circles and open circles, respectively (P/P_{o}) , relative pressure). 8

Metallation with Ni(II) salts to achieve additional open metal sites (Milestone 3.2.1)

Characterization of super metallated framework by inductively coupled plasma (ICP) analysis shows addition of open metal sites (Milestone 3.2.1)

MOF	Ni salts	Ni/Mg molar ratio	
	Ni(OAc) ₂ ·4H ₂ O	0.43	
Mg-IRMOF-74-III-20HBAL	NiCl ₂ ·glyme	0.09	
	Ni(NO ₃) ₂ ·6H ₂ O	0.06	
	Ni(OAc) ₂ ·4H ₂ O	0.44	
Mg-IRMOF-74-III-340HBAL	NiCl₂∙glyme	0.22	
	Ni(NO ₃) ₂ ·6H ₂ O	0.33	

Characterization of super metallated MOF by (a) PXRD and (b) FT-IR shows retained crystallinity and covalent linkages (Milestone 3.2.1)

Initial results for H₂ sorption are lower than for Mg-MOF-74 and theoretical calculations indicating incomplete material activation— push for optimization (Milestone 3.2.1)

Response to Previous Year Reviewers' Comments

> This project was not reviewed last year.

Collaboration

Organization	Туре	Support	
Lawrence Berkeley National Laboratory	National	Material characterization	
National Renewable Energy Lab	National	Discussion & material characterization	

Remaining Barriers and Challenges

- Activation of metallated frameworks to generate open metal sites is an outstanding challenge in achieving maximum material efficiency.
- Scale-up and further advanced characterization of materials is necessary to determine durability/operability.
- Precise tuning of metal-adsorbate interaction strength requires molecular linker optimization. This will influence charging/discharging rates.
- The variability of our system endows us with options to address these issues.

Project Milestones & Proposed Future Work

Any proposed future work is subject to change depending on funding levels.

Milestone	Description	Completion Date	% Completed
1.2.1	Synthesize crystalline functionalized IRMOF-74 series (MOF-74 and its extended derivatives IRMOF-74 III, IV and V).	11/30/17	100
2.2.1	Characterization of IRMOF-74 backbones after PSM to quantify their pore volume and amount of metal binding sites.	2/28/18	100
3.2.1	Characterizing the as-synthesized super metallated frameworks to quantify metal incorporation.	5/31/18	30
Go/No-Go 1	Develop a MOF with (1) Double the amount of open metal sites compared to the unfunctionalized IRMOF-74 backbone before PSM and (2) total volumetric capacity of 18 g/L H ₂ at 20°C and less than 100 bar (1.5 times of state-of-the-art) based on single crystal density.	8/31/18	n/a

Summary

- Project Timeline: September 2017-September 2018
- Objective: Produce a H₂ adsorbent capable of exceeding the 2025 DOE system targets of 40 g/L and 5.5 wt% under ambient conditions.
- Relevant Barriers: System efficiency, durability/operability, and charging/discharging rates for practical application in on-board H₂ fuel cells.
- Approach: Design and synthesis of a super metallated IRMOF-74 by postsynthetic installation of open metal sites to increase adsorptive capacity.
- Accomplishments: Crystalline Mg-IRMOF-74-III-(CH₂NH₂)₂ was synthesized. Installation of open metal sites was achieved by post-synthetic modification. Initial results show that material integrity is maintained after open metal site incorporation.
- Future Work: Optimize H₂ adsorptive capacity through improved activation procedures to reach system target and go/no-go milestone.