Developing A New Polyolefin Precursor for Low-Cost, High-Strength Carbon Fiber

Mike Chung, Gang Zhang, Joseph Sengeh

Department of Materials Science and Engineering
The Pennsylvania State University

DOE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting
Washington, D.C., June 13-15, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start date: 9/1/2017
- Project end date: 8/31/2020
- % complete: 30%

Budget
- Total project funding: $930,888
 - DOE share: $804,462
 - Penn State share: $127,181
- Funding for FY2017-18: $306,363
- Go/no-Go decision: August 2018

Barriers
- System weight & volume
- System cost, efficiency, durability
- Charging/discharging rates
- Suitable H$_2$ binding energy
- High polymer surface area

Partners
- LightMat consortium
- Oak Ridge National Lab.
Relevance

Research Objectives

- Developing a new polyolefin precursor that is melt-processible and high thermal conversion yield to form carbon fiber (CF).
- Co-carbonization with B-containing precursor to prepare B-doped CF with reduced temperature, high yield, smaller d-spacing.
- Cost savings can be realized through the combination of low cost precursor, melt-spinning fiber process, low carbonization temperature, high mass yield, and high tensile strength in the B-doped CF.

Potential Benefits and the Impact on Technology

- If successful, this new technology can offer a cost-effective CF for fabricating onboard storage vessel with compressed hydrogen (700 bars) in FCEVs. The main objective is to achieve the DOE cost target of $10/kWh (about $1,900 per vehicle with 5.6 Kg of usable hydrogen). It also can impact other energy-relative applications, such as wind blades, flywheels, transportation, etc.
Relevance: DOE cost targets

Composite overwrapped pressure vessel for 5.6 Kg usable hydrogen

<table>
<thead>
<tr>
<th></th>
<th>Energy cost ($/kWh)</th>
<th>System cost ($/vehicle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 system</td>
<td>$17</td>
<td>$3,200</td>
</tr>
<tr>
<td>2015 system</td>
<td>$15</td>
<td>$2,800</td>
</tr>
<tr>
<td>DOE Target</td>
<td>$10</td>
<td>$1,900</td>
</tr>
</tbody>
</table>

Type IV COPV system with polymer liner and annual production rate of 500,000 systems

DOE 2015 cost analysis indicated that 62% of the system cost would come from the cost of carbon fiber (CF)

5 gallon tank with 700 bars pressure
5 kg H₂ storage for 300 miles driving range (45-60 miles/kg H₂)
High Cost (~ $3,000 per vehicle)
Relevance: Current CF precursors

Polyacrylonitrile (PAN)

![Polyacrylonitrile (PAN) molecular structure]

Pitch (petroleum)
Oligomeric mixture of polycyclic aromatic hydrocarbons (PAH) with molecular weight 200-800

Pitch (coal tar)
PAH and Phenols make up two large classes of chemicals.

![Chemical structures of PAH and Phenols](image)
Advantages of Pitch precursor:
Low cost, melt-processible, and high C yield (up to 70%)
Relevance: Current thermal production process

PAN Polymer Precursor → PAN Fiber
- wet spinning + stretching

Surface Treatment & Sizing

Carbonization
(1000-2000 °C in N₂ atmosphere) + Stretching

Stabilization
(200-300 °C in air for 30-120 minutes) + Stretching

N₂

air
Relevance: PAN thermal conversion

Stabilization
(200-300 °C)

Carbonization
(1000-2000 °C)

Overall thermal conversion yield ~50%
Milestone Summary Table

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Task or Subtask (if applicable) Title</th>
<th>Milestone, Go/No-Go Decision</th>
<th>Milestone Number</th>
<th>Milestone Description (Go/No-Go Decision Criteria)</th>
<th>Milestone Verification Process*</th>
<th>Anticipated Date (Months)</th>
<th>Anticipated Quarter (Quarters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis of Diene Monomers</td>
<td>Milestone</td>
<td>M1.0</td>
<td>Synthesis route and two diene monomers</td>
<td>1H and 13C NMR spectra of the resulting monomers.</td>
<td>1-2</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Synthesis of PE Copolymers with DVB and BSt units</td>
<td>Milestone</td>
<td>M2.1</td>
<td>Confirm two resulting polymer structures</td>
<td>GPC curves and 1H NMR spectra of two polymers.</td>
<td>3-6</td>
<td>1-2</td>
</tr>
<tr>
<td>2.2</td>
<td>Synthesis of Poly(DVB) and Poly(BSt) Homopolymers</td>
<td>Milestone</td>
<td>M2.2</td>
<td>Confirm two resulting polymer structures</td>
<td>GPC curves and 1H NMR spectra of two polymers.</td>
<td>7-9</td>
<td>2-3</td>
</tr>
<tr>
<td>3</td>
<td>Stabilization and Carbonization Study</td>
<td>Milestone</td>
<td>M3.0</td>
<td>Convert precursors to C materials</td>
<td>mass yield, TEM, XRD, elemental analysis.</td>
<td>8-12</td>
<td>2-4</td>
</tr>
</tbody>
</table>

1st Go/No-Go Decision

A new low-cost polyolefin precursor that can be prepared and transformed to C with mass yield (>80%), more than 60% higher than that of current PAN. Send 10 slides to LightMat /DOE.

4	Scaling Up the Selected Polyolefin Precursors	Milestone	M4.0	Selected precursors with Kg quantity	1H NMR, GPC, DSC and TGA spectra.	13-15	5
5.1	Melt-Spinning of Polyolefin Precursors	Milestone	M5.1	Fiber-spinning to polyolefin fibers	Pictures and Strain-stress curves.	16-21	6-7
5.2	Carbonization of Polyolefin Fibers	Milestone	M5.2	New polyolefin based CF products	TEM, SEM, XRD,Instron, and elemental analysis.	19-24	7-8

2nd Go/No-Go Decision

A new low-cost and high-quality carbon fiber obtained from a new polyolefin precursor and melt-spinning process. Send 10 slides to LightMat /DOE.

6.1	Co-carbonization study of Polyolefin Blends with B-Precursors	Milestone	M6.1	New B-doped C (BCx) materials	13C and 11B NMR spectra and elemental analysis	25-30	9-10
6.2	Melt-Spinning of Polyolefin Blends with B-Precursors	Milestone	M6.2	Fibers from B-containing polymer blends	Pictures and Strain-stress curves.	28-33	10-11
6.3	Carbonization of Polyolefin Blend Fibers	Milestone	M6.3	New B-doped CF (B-CF)	TEM, SEM, XRD,Instron, and elemental analysis.	31-36	10-12
Approach: Design new polyolefin precursors

• Semi-crystalline hydrocarbon polymer (>80% C content)
• Melt-spinning to fibers with good tensile strength
• Reactive side groups for thermal conversion
• Facile stabilization reaction at <300 °C
 ➢ Forming ladder/conjugated chain structure
 ➢ No external reagent required
 ➢ No by-product formed, except H₂ and H₂O
• Effective thermal conversion with a high C yield (>80%)
• Low cost and scalable
Approach: New polyolefin precursors

\[
\begin{align*}
\text{H-C=CH}_2 \\
\text{C}_x
\end{align*}
\]
Accomplishments: Synthesis of Poly(divinylbenzene)
PDVB precursor

Benefits of Cp*Ti(OCH₃)₃-mediated polymerization:
- Mono-enchainment of DVB monomers
- Processible PDVB polymer (soluble in solvents)
- High polymer conversion
- Syndiotactic polymer backbone structure
- Semi-crystalline morphology
Accomplishments: 1H NMR spectra

DVB monomer

PDVB polymer precursor
Approach: Stabilization mechanism (by heat)

- Low temp. stabilization reactions via styrenyl side groups.
- Both reaction mechanisms require no external reagent.
Accomplishments: TGA curves of PDVB precursors

Carbonization yield is in the range of 65-75%
Accomplishments: TGA curves of PDVB precursors

C yield systematically decreases with the decrease of DVB content.
Accomplishments: Synthesis of Poly(phenylacetylene) derivatives

\[\text{Pd(pph}_3\text{Cl}_2/Cul} \rightarrow \text{Si} \quad \text{Si} \quad \text{Si} \quad \text{Si} \quad \text{Si} \quad \text{NaOH} \rightarrow \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{WCl}_6/\text{Ph}_4\text{Sn} \rightarrow \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{C} \quad \text{TBAF} \rightarrow \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \]

\[^1\text{H NMR} \]

\[\text{H} \quad \text{H} \quad \text{H} \quad \text{H} \quad \text{H} \]
Accomplishments: FTIR spectra of Poly(phenylacetylene) derivatives
Accomplishments: DSC and TGA curves of Poly(phenylacetylene) acetylsilane-derivatives

- Relatively weak stabilization reaction
- Stabilization at >250 °C
- Carbonization yield ~55%
Accomplishments: DSC and TGA curves of Poly(phenylacetylene) acetyl-derivatives

- Strong well-defined stabilization mechanism
- Stabilization at 200-220 °C
- Carbonization yield ~85%
Accomplishments: Synthesis of Poly(phenylacetylene) acetylphenyl derivatives

\[\text{Br} - \text{Si} - \text{C} = \text{C} - \text{H} \xrightarrow{\text{Pd(ppy}_3\text{)}\text{Cl}_2/\text{CuI}} \text{Si} - \text{C} = \text{C} - \text{C} - \text{C} - \text{H} \xrightarrow{\text{TBAF}} \text{H} - \text{C} = \text{C} - \text{C} - \text{H} \xrightarrow{\text{WCl}_6/\text{Ph}_4\text{Sn}} \text{H} - \text{C} = \text{C} - \text{C} - \text{H} \]

\[^1H\text{ NMR} \]

\[\text{ppm} \]

\[1.00, 0.80, 0.03 \]
Accomplishments: DSC and TGA curves of Poly(phenylacetylene) acetylphenyl-derivative

- Multiple stabilization mechanisms
- Stabilization happened at >250 °C
- Carbonization yield >75%
Accomplishments: Co-carbonization between Petroleum pitch and B-precursor

- B elements incorporated in pitch in forming mesophase B-pitch precursor
- B enhances carbonization process
- Increase carbonization yield
Summary

- Conducting a systematical study (design, synthesis, and evaluation) to identify the suitable polymers with high carbonization yield.
- Two poly(phenylacetylene) derivatives show carbonization yield higher than 80%.
- Synthesis of B-containing pitch precursor that enhances the carbonization process.
- Collaborating with ORNL in fiber processing, thermal conversion, and carbon fiber evaluation.
Future Work

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Task or Subtask (if applicable) Title</th>
<th>Milestone, Go/No-Go Decision</th>
<th>Milestone Number</th>
<th>Milestone Description (Go/No-Go Decision Criteria)</th>
<th>Milestone Verification Process*</th>
<th>Anticipated Date (Months)</th>
<th>Anticipated Quarter (Quarters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Synthesis of Diene Monomers</td>
<td>Milestone</td>
<td>M1.0</td>
<td>Synthesis route and two diene monomers</td>
<td>1H and 13C NMR spectra of the resulting monomers.</td>
<td>1-2</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Synthesis of PE Copolymers with DVB and BSt units</td>
<td>Milestone</td>
<td>M2.1</td>
<td>Confirm two resulting polymer structures</td>
<td>GPC curves and 1H NMR spectra of two polymers.</td>
<td>3-6</td>
<td>1-2</td>
</tr>
<tr>
<td>2.2</td>
<td>Synthesis of Poly(DVB) and Poly(BSt) Homopolymers</td>
<td>Milestone</td>
<td>M2.2</td>
<td>Confirm two resulting polymer structures</td>
<td>GPC curves and 1H NMR spectra of two polymers.</td>
<td>7-9</td>
<td>2-3</td>
</tr>
<tr>
<td>3</td>
<td>Stabilization and Carbonization Study</td>
<td>Milestone</td>
<td>M3.0</td>
<td>Convert precursors to C materials</td>
<td>mass yield, TEM, XRD, elemental analysis.</td>
<td>8-12</td>
<td>2-4</td>
</tr>
</tbody>
</table>

1st Go/No-Go Decision

A new low-cost polyolefin precursor that can be prepared and transformed to C with mass yield (>80%), more than 60% higher than that of current PAN.

Send 10 slides to LightMat /DOE

4	Scaling Up the Selected Polyolefin Precursors	Milestone	M4.0	Selected precursors with Kg quantity	1H NMR, GPC, DSC and TGA spectra.	13-15	5
5.1	Melt-Spinning of Polyolefin Precursors	Milestone	M5.1	Fiber-spinning to polyolefin fibers	Pictures and Strain-stress curves.	16-21	6-7
5.2	Carbonization of Polyolefin Fibers	Milestone	M5.2	New polyolefin based CF products	TEM, SEM, XRD, Instron, and elemental analysis.	19-24	7-8

2nd Go/No-Go Decision

A new low-cost and high-quality carbon fiber obtained from a new polyolefin precursor and melt-spinning process.

Send 10 slides to LightMat /DOE

6.1	Co-carbonization study of Polyolefin Blends with B-Precursors	Milestone	M6.1	New B-doped C (BCx) materials	13C and 11B NMR spectra and elemental analysis	25-30	9-10
6.2	Melt-Spinning of Polyolefin Blends with B-Precursors	Milestone	M6.2	Fibers from B-containing polymer blends	Pictures and Strain-stress curves.	28-33	10-11
6.3	Carbonization of Polyolefin Blend Fibers	Milestone	M6.3	New B-doped CF (B-CF)	TEM, SEM, XRD, Instron, and elemental analysis	31-36	10-12

Any proposed future work is subject to change based on funding levels.