

Driving Innovation through Chemistry

High-density Hydrogen Storage in Space-filling Polyhedral Sorbents

Project ID: st150

PI: Lawrence H. Dubois Presenter: Ganesh Skandan NextGen Battery Technologies, LLC

June 13, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timelines

Start: April 9, 2018 End: October 8, 2018

Barriers

A. System weight and volume

J. Thermal management

E. Charging/discharging rates

<u>Budget</u>

Phase I SBIR

Total project budget: \$143,783

Federal share: \$143,783

Partners

NEI Corporation

Relevance

Objective

Increase the packing density of adsorbent materials using a scalable process without compromising their hydrogen storage properties or adversely affecting storage temperatures and pressures, gravimetric capacity, or reversibility

Parameter	DOE 2020 Technical Target	Project Impact
System volumetric capacity	0.030 kg H ₂ /liter system	Increase >50% (materials dependent)
System gravimetric capacity	0.045 kg H ₂ /kg system	No change
Min/max delivery temperature	-40 °C / +85 °C	No change
Min delivery pressure	5 bar	No change
Minimum full flow rate	0.02 (g H ₂ /s)/kW	No change

Approach

- Demonstrate the formation of space-filling polyhedral microliths from an activated carbon, a metal organic framework material, and a porous polymer
- Demonstrate the packing of space-filling polyhedral sorbents in a 1-liter container

	Milestone	Date	Performance
1	Formation of space-filling polyhedral shapes from at least two distinct classes of base materials with <5% change in key properties	08/09	Demonstrated for activated carbon
2	High-pressure hydrogen storage in space-filling polyhedral microliths from at least two distinct classes of base materials with <5% change in properties	09/09	Not started
3	Provide samples of space-filling polyhedral sorbents to NREL to validate adsorption measurements	10/09	Activated carbon available today
4	Demonstrate the packing of space-filling polyhedral sorbents in a 1-liter container with >95% of the theoretical packing fraction	10/09	Demonstrated at 250 ml

Accomplishments and Progress: Shapes

- Hardware for fabrication of space-filling microliths developed
- Pressing/casting conditions established
 - Carbon: 70 140 MPa (10 20 kpsi)
 - MOF: 50 MPa (7 kpsi)
 - Polymer: cast
- 6 kg of activated carbon rhombic dodecahedra fabricated

Space-filling polyhedral dies for a high-speed rotary tablet press

Gyrobifastigium

Truncated Octahedron

Gyrobifastigium

Truncated octahedron

Accomplishments and Progress: Packing

 Demonstrated packing of space-filling microliths in a 250 ml container with >96% of the theoretical packing fraction

Comparable volume of spheres (white, 43% packing) and rhombic dodecahedra (red, 66.9% packing) in 250 ml jars

Packing of space-filling polyhedral microliths in a 250 ml jar

Accomplishments and Progress: *Responses to Previous Year Reviewers' Comments*

This project was not reviewed last year

Collaboration and Coordination

- Sub-awardee: NEI Corporation
- Small business outside the DOE Hydrogen and Fuel Cell Program
- Assist with materials synthesis, shaping, characterization (surface area, density, low-pressure hydrogen uptake), tank filling
- Critical to the success of the project

Remaining Challenges and Barriers

- Within the project
 - Procurement and/or synthesis of MOF-5
 - Synthesis of hyper-crosslinked polymer
 - Additional materials to test?
- To reach DOE hydrogen storage goals
 - Higher hydrogen density storage materials

Proposed Future Work

- Complete formation of space-filling microliths from MOF-5 (or other MOF), hyper-crosslinked polymer, other? – Milestone due 08/09
- Measure hydrogen uptake at low (1 atm) and high (100 atm) pressures for all samples – Milestone due 09/09
- Optimize filling of 1 liter vessel with space-filling microliths – Milestone due 10/09
- Outreach to industry for feedback ongoing
- Write successful SBIR Phase II proposal (FY19) TBD

Any proposed future work is subject to change based on funding levels

Technology Transfer Activities

- US patent 9,370,765: *Space-filling Polyhedral Sorbents* (issued June 21, 2016)
- Collaboration with InnerProduct Partners (venture capital)
- Industrial outreach begun

Summary

Goal

 Demonstrate the formation of space-filling polyhedral microliths from an activated carbon, a metal organic framework material, and a porous polymer and show that their hydrogen storage capacity has not been diminished from that of the base material by more than 5%

Accomplishments

- Hardware for fabrication of space-filling microliths developed
- Pressing/casting conditions established
- 6 kg of activated carbon rhombic dodecahedra fabricated
- Demonstrated packing of space-filling microliths in a 250 ml container with >96% of the theoretical packing fraction

Technical Back-up Slides

Shape Packing

	Advantages	Disadvantages
Spheres	 Added through the neck of a standard gas cylinder 	Low packing densityPoor thermal conductivity
Monoliths	 Near 100% packing fraction Improved thermal conductivity 	 Expensive and difficult to form Low gas flow rate Custom cylinder
Space-filling polyhedra	 Near 100% packing fraction Added through the neck of a cylinder Improved thermal conductivity High gas flow rate 	

	Monodispersed Spheres	Bimodal (10X) Size Distribution	Monolith	Space-filling Polyhedra
Random packing	0.534	0.726	N/A	0.97
Ideal	0.740	0.933	1.0	1.0

Spheres: S. Yamada, et al., IPSJ Trans. Math. Model. and Appl. 4 (2011) 23Monoliths: ATMI/EntegrisSpace-filling polyhedra: US patent 9,370,765

Sorbent Agnostic: Literature Observations

	Measurement	Powder	Monolith
	Size	200 μm	10+ cm
Pvdc-based	Surface Area	1030 m²/g	1030 m²/g
activated carbon	Density	0.68 g/cm ³	1.10 g/cm ³
(BrightBlack) (1)	Pore Volume	0.4 cm ³ /g	0.4 cm ³ /g
	CO ₂ , CH ₄ Uptake	Identical	
	Size	0.25 μm	0.5 cm
	Surface Area	2762 m²/g	2265 m²/g
MOF 5 (2)	Density	0.13 g/cm ³	0.5 g/cm ³
	Pore Volume	1.37 cm ³ /g	1.12 cm ³ /g
	H ₂ Uptake	7.4 g/l	26 g/l
	Surface Area	>2000 m²/g	>2000 m²/g
Hyper-crosslinked	Pore Volume	0.70 – 0.78 cm ³ /g	0.70 – 0.78 cm ³ /g
	CH ₄ Uptake	0.156 g/g and 82.7 cm ³ /cm ³	0.156 g/g and 164 cm ³ /cm ³

(1) ATMI/Entegris

(2) J. J. Purewal, et al., Int. J. H. Energ. **37** (2012) 2723

(3) W. T. Yongqin and F. Svec, Appl. Energ. 183 (2016) 1520