Cost-effective, Intermediate-temperature Fuel Cells for Carbon-free Power Generation

Project ID: ARPAE-15

PI: Greg G. Tao
Chemtronergy, LLC.
3619 W 1987 S, Salt Lake City, UT 84104

2019 DOE Hydrogen and Fuel Cells Program Annual Merit Review
April 30, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
• Start: November 2017
• End: August 2019
• Percent complete: 80%

Budget
• Total Project Value
 – ARPA-E $1,100,000
 – Cost-share $ 122,222
• Funding received in FY18
 – $ 510,000
• Funding for FY19
 – $ 450,000

Barriers
Fuel Cells
• A – Durability
 – Longer operation
 – Lower degradation
• B – Cost
Manufacturing
• F – High cost and complexity of processing
• I – Lack of standardized BOP components

Partners
• University of Maryland
• TechOpp Consulting Inc.
Objective: develop and demonstrate a transformational technology that cost-effectively and efficiently converts the chemical energy of ammonia fuel directly into electricity at a reduced temperature (≤650°C) through the design and manufacturing of an advanced IT-SOFC with unique hierarchical structures.

Targets

<table>
<thead>
<tr>
<th>Metric</th>
<th>State of the Art</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered SUE Cost</td>
<td>> $0.3 /kWh</td>
<td>~ $0.3/kWh</td>
</tr>
<tr>
<td>Max operating temperature</td>
<td>800~900°C</td>
<td>≤ 650°C</td>
</tr>
<tr>
<td>Current density at 0.75V</td>
<td>0.4 A/cm²</td>
<td>0.3 A/cm²</td>
</tr>
<tr>
<td>Electrical efficiency</td>
<td>52~60%</td>
<td>> 55%</td>
</tr>
<tr>
<td>Cell degradation rate</td>
<td>> 1%/1kh</td>
<td>< 0.3%/1kh</td>
</tr>
</tbody>
</table>
Approaches

- Catalysts & implementation process development
- Strategies for performance enhancement
- Advanced manufacturing process development

Materials Development
 - NH₃ catalyst – nano metal oxides
 - Cathode catalysts

Cell Fabrication Process Development
 - Cathode deposition optimization
 - Anode fabrication process development
 - Scale-up

IT-SOFC Experimental Evaluation
 - Button sized cells (2 cm²/cell)
 - Single cells (100 cm²/cell)

Technology-to-Market (T2M)
 - Techno-economic analysis (TEA)
 - T2M development
21-month Project (11/2017 – 08/2019)

○ Concept development phase (12-month) focusing on materials development & evaluation, advanced process development, and T2M plan development

○ Scale-up phase (9-month) focusing on scaling up & large-cell evaluation for proof-of-conception (PoC) demonstration, and T2M plan updating

Concept phase (12-month):

Critical cell components development, cathode, catalysts, anode fabrication processing, small cell fabrication, T2M plan initialization

Development Phase (9-month):

Cell materials integration, large cell fabrication (100 cm²/cell), single cell construction, & evaluation, T2M plan updating
Challenges for Direct NH$_3$ Fueled SOFCs

Freshly reduced anode

After exposure to NH$_3$ fuel at 650ºC

Pristine Ni mesh

After hundreds hours test under NH$_3$ environment at 650ºC
Technical Accomplishments – NH₃ Cat.

- Evaluated eight NH₃ catalyst candidates
- Standard Ni+YSZ doesn’t possess sufficient catalytic effects on NH₃ decomposition at T ≤ 700ºC
- A few catalysts showed near complete NH₃ conversion (100%) ≤ 50 sccm (7137 h⁻¹)
Measurement of ohmic ASR changes under NH₃ environment by 4-point method

Three samples:
1. blank substrate (anode support);
2. w/ Cat-2
3. w/ Cat-6

Pt meshes for current collection

650°C

NH₃ flow rate @ 20 sccm (2854 h⁻¹)

Stability: Cat-6 >> Cat-2 >> anode base substrate
Electrolyte Optimization

(a) our standard cell (project onset), ~ 12 µm

(b) second generation cell (Q3), 8~9 µm;

(c) third generation cell (Q4), 5~6 µm;

(d) an example of electrolyte defect (~ 2 µm thick)
3rd Gen Button Cell Performance

Button cell baseline performance with H\textsubscript{2} at various temperatures (800ºC – 650ºC)

Button cell performance comparison between H\textsubscript{2} and NH\textsubscript{3} at 650ºC

<table>
<thead>
<tr>
<th>T, ºC</th>
<th>OCV, V</th>
<th>Power density @ 0.75V, W/cm2</th>
<th>Peak power density, W/cm2</th>
<th>ASR, Ωcm2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H\textsubscript{2}*</td>
<td>NH\textsubscript{3}</td>
<td>H\textsubscript{2}</td>
<td>NH\textsubscript{3}</td>
</tr>
<tr>
<td>650</td>
<td>1.188</td>
<td>1.122</td>
<td>0.377</td>
<td>0.308</td>
</tr>
<tr>
<td>700</td>
<td>1.183</td>
<td></td>
<td>0.692</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>1.176</td>
<td></td>
<td>1.108</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>1.167</td>
<td></td>
<td>1.514</td>
<td></td>
</tr>
</tbody>
</table>
Button Cell Continuous Test with NH$_3$

- Batch-17 #H105 (2cm2), 650°C, NH$_3$ @40sccm (5710 h$^{-1}$)/air
- Current density @ 0.75V
- Cell power density @ 0.75V
- M4.3 @ 11/14/2018: 0.3 W/cm2 for 24 hours

Elapsed time, hrs

Current density or power density, A/cm2 or W/cm2

Cell temperature, ºC

M4.3 @ 11/14/2018: 0.3 W/cm2 for 24 hours
Scale-up Cell Performance w/ NH$_3$ Fuel

VI sweep characteristics of a single cell (100cm2/cell) tested with NH$_3$ from 800°C to 650°C
Long-term test results of a single cell at 650°C with NH₃ (200 hrs) and 60% H₂-N₂ (500 hrs)
Proposed Future Work

By Q3 FY2019

- Complete long-term tests of single cells (100 cm²/cell) directly fed with ammonia fuel at 650°C, demonstrating the degradation rate < 0.3%/1khr over 500 hours @ 0.225 W/cm² @ 0.75V
- Update T2M
- Complete TEA

Beyond 2019

Look for partners who can help transitioning the advanced laboratory technologies into marketable products

- Scale-up demonstration at a kW stack scale
- System integration and demonstration at a kW level
- Investors (private & government)
Summary – Documented Progress toward Targets

➢ Successfully developed and implemented an ammonia catalyst system for preserving SOFC electrode functionality and mechanical integrity

➢ Improved manufacturing processes for SOFCs performance enhancement and suitable for cell scaling up

➢ Completed technical milestones on schedule