Novel ionomers and electrode structures for improved PEMFC electrode performance at low PGM loadings

DoE Annual Merit Review
Washington, DC, April 30, 2019

Project FC155: PI: Andrew Haug, 3M
BUDGET & Status

Timeline
- Project start date: 10/1/16
- Project end date: 9/30/19
 - 29 of 36 months complete @ AMR

Budget
- Total Project Budget: $3,245,349
 - Total Recipient Share: $649,071
 - Total Federal Share: $2,596,278
- Total Project Costs:* $2,148,352
 - Current Recipient Share: $428,089
 - Current DOE Share: $1,712,356
* As of 1/31/19
** Sub expenses as of 1/1/19
 Running roughly 3 months underspent

Barriers addressed
- Cost, durability, performance
- Operational robustness

Partners
- SUBCONTRACTORS
 - Michigan Technological University
 - Tufts University
 - FCPAD:
 - LBNL, ORNL, NREL, LANL, ANL
- PROJECT LEAD:
 - 3M
Key Barrier: Cathode Transport limitations

Dispersed Cathodes at SEF’s below $100 \text{ cm}^2_{\text{PGM/cm}^2_{\text{planar}}}$
- Transport losses become significant

Traditional NSTF cathodes break this trend
- SEF’s as low as 10.

Likely that *oxygen transport through ionomer* near the reaction site is a key limitation

FC155 goal is to
- Understand and improve Ionomer, bulk & local electrode transport
- Integrate NSTF into a dispersed electrode
- Maintain NSTF activity and durability
- Achieve high performance and robustness

IMPROVED IONOMER

2 methods to improve transport

Dispersed NSTF

Incorporate NSTF into powdered electrode

- 10-100X thicker than NSTF
- Contains ionomer
- Improved operational robustness
- Not constrained to planar NSTF loadings

Approach

10 micron

COMBINE
Relevance, Objectives & Status

<table>
<thead>
<tr>
<th>METRIC</th>
<th>2020<sup>1</sup> Target</th>
<th>FC155 Target</th>
<th>3/2017</th>
<th>3/2018</th>
<th>2/2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGM total loading, mg/cm<sup>2</sup></td>
<td>0.125</td>
<td>0.125</td>
<td>0.102<sup>2</sup></td>
<td>0.102<sup>2</sup></td>
<td>0.095<sup>2</sup></td>
</tr>
<tr>
<td>PGM total loading, g / kW [150 kPa abs]</td>
<td>NSTF Ionomer 0.125</td>
<td>0.125</td>
<td>0.172<sup>2</sup></td>
<td>0.172<sup>2</sup></td>
<td>0.172<sup>2</sup></td>
</tr>
<tr>
<td>Mass activity @ 900 mV iR-free, A/mg</td>
<td>NSTF Ionomer 0.44</td>
<td>0.44+</td>
<td>0.28+</td>
<td>0.28+</td>
<td>0.31</td>
</tr>
<tr>
<td>Support AST, % mass activity loss, 5k cycles</td>
<td>NSTF Ionomer < 30</td>
<td>< 30</td>
<td>28% (Pt)</td>
<td><10% (Pt)</td>
<td><10% (Pt)</td>
</tr>
<tr>
<td>Electro catalyst AST, mV loss @ 0.8 A/cm<sup>2</sup></td>
<td>NSTF Ionomer < 30</td>
<td>< 30</td>
<td>NA</td>
<td>80<sup>5</sup></td>
<td>80<sup>5</sup></td>
</tr>
<tr>
<td>Electro catalyst AST, % Mass activity loss</td>
<td>NSTF Ionomer < 40</td>
<td>< 40</td>
<td>45% (Pt)</td>
<td>40% (Pt)</td>
<td>41% (Pt/Ir)</td>
</tr>
<tr>
<td>MEA Robustness (cold/ hot / cold transient)</td>
<td>NSTF Ionomer 0.7/0.7/0.7</td>
<td>>0.7/0.7/0.7</td>
<td>0.83/0.79/1.0</td>
<td>0.93/0.84/0.90</td>
<td>0.93/0.84/0.90</td>
</tr>
<tr>
<td>Ionomer Conductivity (S/cm, 80C, 50%RH)</td>
<td>---</td>
<td>0.087</td>
<td>0.050</td>
<td>0.070</td>
<td>0.099</td>
</tr>
<tr>
<td>Ionomer Bulk O<sub>2</sub>, perm (mol·cm<sup>-1</sup>·cm<sup>-2</sup>·kPa<sup>-1</sup>), 80C, 50RH</td>
<td>---</td>
<td>1.8E-13</td>
<td>2.0E-13</td>
<td>2.3E-13</td>
<td>2.1E-13</td>
</tr>
</tbody>
</table>

¹ All metrics and DOE 2020 targets are taken from DE-FOA-0001412
² 0.025 mgPt/cm² anode
³ 3M transient protocols used for NSTF testing

4 At 0.661V for 80/68/68C, 7.5 psig, 0.686V for 90/84/84C, 21/6 psig
5 At 70/70/70C, 0 psig
Collaboration & Coordination

INTEGRATE to Cathode

Ionomers
- Membranes
- Thin films
- Electrodes
- CCMs

NSTF [POWDER]
- Electrodes
- CCMs

MTU
- Washburn
- Hele Shaw, AFM
- AFM, PNM model
- STEM

TUFTS
- nanoCT
- Electr. Cond.
- InoperandoCT
- Electrode Cond.

FCPAD
- GISAXS, WAXS
- SEM, STEM
- AST testing, RDE
- Water uptake
- Conductivity

3M
- O₂ perm
- Perf Testing
- AST testing
Progress and Objectives

Milestone Summary Table

<table>
<thead>
<tr>
<th>BP1</th>
<th>Go/NoGo: NSTF electrode ECSA >= 15 m²/g, 40 cm²/cm², 0.7 robustness. Ionomer bulk O2 perm + conductivity > 3M825 baseline</th>
<th>Q/M</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASK</td>
<td>Synthesize IMIDE#1, Make 20+ grams of NSTF 25 ugPt/cm2 powder.</td>
<td>1/3</td>
<td>100</td>
</tr>
<tr>
<td>TASK</td>
<td>Validate DoE AST tests, specialty tests, run baseline with 3 ICs, 3 loadings..</td>
<td>2/6</td>
<td>100</td>
</tr>
<tr>
<td>TASK</td>
<td>Characterize ionomer, Pt/C, and powder NSTF (SEM, TEM, NanoCT, etc)</td>
<td>3/9</td>
<td>100</td>
</tr>
<tr>
<td>TASK</td>
<td>NSTF powder electrode >= 0.30 A/mg Pt, NanoCT disp NSTF,</td>
<td>4/12</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BP2</th>
<th>Go/NoGo: Ionomer exceeds 3M825 O₂ perm by 33% with similar or improved conductivity. 0.35 A/mg Pt, 0.175 g/kW power output</th>
<th>Q/M</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASK</td>
<td>Reaction-kinetics model added to PNM framework. PNM predicts pol curves at T = 40 °C and 80°C.</td>
<td>5/15</td>
<td>100</td>
</tr>
<tr>
<td>TASK</td>
<td>NSTF Cathode ECSA >= 25 m²/g.</td>
<td>6/18</td>
<td>100</td>
</tr>
<tr>
<td>TASK</td>
<td>MTU/Tufts: Baseline structures, electrochem input to PNM, delivering initial predictions.</td>
<td>7/21</td>
<td>100</td>
</tr>
<tr>
<td>TASK</td>
<td>NSTF activity >=0.35 A/mg Pt in an electrode. 0.2 g/kW with NSTF containing electrode. *0.31 A/gm_PGM achieved with NSTF, 0.36 A/mg_PGM with durable dispersed alloy</td>
<td>8/24</td>
<td>95*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BP3</th>
<th>END: See Targets slide</th>
<th>Q/M</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASK</td>
<td>MTU/Tufts: PNM - continuum predicts pol curves for T = 40 and T = 80C within 10%</td>
<td>9/27</td>
<td>80</td>
</tr>
<tr>
<td>TASK</td>
<td>Support AST targets achieved. Metal cycle AST <40% activity loss.</td>
<td>10/30</td>
<td>100</td>
</tr>
<tr>
<td>TASK</td>
<td>Ionomer with 50% greater O₂ permeability and 50% greater H+ conductivity than 3M825</td>
<td>11/33</td>
<td>100</td>
</tr>
<tr>
<td>TASK</td>
<td>>=0.44 A/mg PGM in electrode. Metal AST <=30% activity loss. 0.125 g/kW.</td>
<td>12/36</td>
<td>40</td>
</tr>
</tbody>
</table>
TASK1: Ionomer Development

Bulk O₂ permeability
- GM (Zhang ECS 2013) method
- Imide #4 (vs 825): +92%
- Imide #6 (vs 825): +105%
- Imide #8 (vs 825): +64%

Bulk conductivity
- 4 point probe
 - IMIDE#4 (vs 825): +22%
 - IMIDE#8 (vs 825): +74%

2nd Validation of Imide#6
- Oxtran O₂ transmission
 - (vs 825): +64% [23C, 0%RH]

Bulk O₂ Perm, Conductivity

IMIDE#8

80C, 50%RH Target

Project Target

825EW baseline

Conductivity, S/cm

O2 perm, [mol*cm*s⁻¹*cm⁻²*kPa⁻¹]
TASK1: Ionomer Structure

Ionomer thin films have been evaluated
- GISAXS, Ellipsometry
- On Pt and Si substrates

PFIA and MASC thin films have
- Larger ionomer domain spacing
- Stronger nano-phase separation
- Reduced preferential orientation parallel to Pt, Si
- More swell with Pt vs. Si

PFSA & IMIDE#2 more oriented on Pt
- More likely to lay flat on catalyst

Domain Spacing

IONOMER Thin Films

Ellipsometry

- Si, 50nm
- Pt, 50nm
- Pt, 20nm

Results suggest larger free volume and better transport pathways for ionic and gaseous species, which are favorable outcomes for catalyst performance.
TASK1: Ionomer Conductivity, Uptake

Electrode, Tufts/MTU

MTU: Water uptake vs. Ionomer
- All using I/C=0.9, 10V50E
- Water uptake increases for PFIA, MASC

Tufts evaluating Ionomer conductivity
- DC Technique using H₂ pump
- PFIA conductivity @ 80%RH: 8,12X [vs 825, 1000EW]
- I_{PFIA}/C=0.4 equivalent to I_{825}/C=0.8

Tufts evaluating Ionomer tortuosity
- Compare DC Technique and AC(EIS) techniques
- Ratio results to estimate H⁺ tortuosity vs. RH

Washburn method: Electrode Water Uptake

Vulcan – Ionomer films

KEY
TASK 1: Ionomer Local Gas Transport Electrode, NREL/LBNL/3M

Less ionomer reduces resistance
- I/C=0.9 to 0.4 reduced resistance 19-33%
- Seen for H₂ & O₂ transport
- dNSTF and Pt/C systems

Not yet clear differentiation of ionomer type
- Results similar to PFSA baselines at 3M, NREL
- Testing more now at NREL

UNUSUAL Behavior with I/C<0.4
- 825 PFSA shows increase vs. I/C=0.4
- PFIA & MASC2 do not
- Possible agglomeration, catalyst de-activation at <100%RH

Graphs
- **Transport Resistance** vs. I/C Ratio
- **Interfacial Resistance** vs. I/C Ratio
- **RₙF [s/cm]** vs. I/C Ratio

Technical accomplishments

NREL, O₂

3M, O₂

LBNL, H₂

NREL, O₂
TASK1+3: Ionomer Integration

Lower I/C = Higher catalyst activity
- Low-Mid SA carbons
- Gr2 carbon activity increased 61%
- Consistent with Shinozaki et al (on RDE)

Near 0.3 A/mgPt with Pt/Vu

Pt-alloy/Gr2 = 0.36 A/mgPt
- BP2 GNG

Gr3, Gr3a promise higher activity
- 3000+ support cycles

Graphitized Carbon#2, 825EW

K. Shinozaki et al. / Journal of Power Sources 325 (2016) 745
TASK1+2+3: Ionomer Integration

Aggregates & Agglomerates influenced by
- C-type, %M, Ionomer type, I/C ratio
- ANL using USAXS to quantify
- Low I/C & dNSTF electrodes more agglomerated

PFIA reduces agglomeration

Processing can reduce agglomeration
- & Increase performance at low I/C

<table>
<thead>
<tr>
<th>Type 1</th>
<th>vs</th>
<th>Type 2</th>
<th>>400nm Aggl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-type</td>
<td>HSC</td>
<td>XC72</td>
<td>7X</td>
</tr>
<tr>
<td>%M/C</td>
<td>XC72</td>
<td>10V50E</td>
<td>50X</td>
</tr>
<tr>
<td>I/C</td>
<td>0.4</td>
<td>0.8</td>
<td>3X</td>
</tr>
<tr>
<td>Ionomer</td>
<td>825</td>
<td>PFIA</td>
<td>2X</td>
</tr>
<tr>
<td>Electrode</td>
<td>dNSTF,</td>
<td>10V50E</td>
<td>~75X</td>
</tr>
<tr>
<td></td>
<td>XC72, I/C=0.4</td>
<td>Baseline</td>
<td>(500X for HSC)</td>
</tr>
</tbody>
</table>

dNSTF electrode HIGHLY agglomerated
TASK1,3: BEST in CLASS

CCM Package SPECS:
- 0.025 mg Pt/cm² anode
- Better membrane, GDL

Alloy M/Carbon, PFIA, I/C=0.4
- 0.125 g/kW @ 0.661V [80°C, 7.5 psig]
- 0.125 g/kW @ 0.686V [90°C, 21.6psig]

Good Pt/C performance at <0.07 mg Pt/cm²
- Imides shows H₂/Air gains

Technical accomplishments
- Conditioning curves, H₂/Air, CF=800/1800 SCCM, T=60/60/60
- 10V50E, 825, IC=0.9, 0.20 mgPt/cm² CA, BASELINE
- 10V50E, PFIA, IC=0.6, 0.11 mgPt/cm² CA
- 10V50E, IMIDE#1, IC=0.9, 0.09 mgPt/cm² CA
- ALLOY, PFIA, IC=0.4, 0.095 mgPt/cm² CA

Imide conditioning slow
- Conditioning curves, H₂/Air, CF=800/1800 SCCM, T=60/60/60
- THERMAL CYCLES
- 75/70/70C
- 800/1800 SCCM
- 0.8V
- IMIDES
- 825EW

Cell Voltage, V
- 80/68/68C,
 S=2.0/2.5,
 P=7.5 PSIG

Current Density, A/cm²
- 0.639
- 0.648
- 0.649
- 0.661
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- 1
- 0 0.5 1 1.5 2

mg Pt/cm² of 10V50E
- 0.1
- 0.2
- 0.06
- 0.1
- 0.15
- 0.2
- 0.25
- 0.3

mg Pt/cm² of 10V50E
- 0.1
- 0.2
- 0.06
- 0.1
- 0.15
- 0.2
- 0.25
- 0.3

Current Density, A/cm²
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- 1
- 0 0.5 1 1.5 2
TASK1,3: BEST in CLASS

Initial attempts have combined

- Activity & conductivity gains with
- Support stability
- Metal stability

Areas of focus/improvement

- Low initial surface area – increase this
- Metal stability
- Optimizing balance of parts

Technical accomplishments

<table>
<thead>
<tr>
<th>Property</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial activity, A/mgPt</td>
<td>0.31</td>
</tr>
<tr>
<td>Local O₂ resistance, S/cm</td>
<td>-25.9% (vs baseline)</td>
</tr>
<tr>
<td>Electrode ionomer thin film conductivity</td>
<td>8X vs. 825</td>
</tr>
<tr>
<td></td>
<td>12X vs. 1000</td>
</tr>
<tr>
<td>Process Improvement</td>
<td>18% power</td>
</tr>
<tr>
<td></td>
<td>[@0.067 mgPt/cm²]</td>
</tr>
<tr>
<td>Support stability</td>
<td>5000+ cycles</td>
</tr>
<tr>
<td>Metal Stability (will improve with package optimization)</td>
<td>-39.6% ECSA</td>
</tr>
<tr>
<td></td>
<td>-69mV (0.8 A/cm²)</td>
</tr>
<tr>
<td></td>
<td>-39mV (0.5 A/cm²)</td>
</tr>
</tbody>
</table>

Property

- Performance

Initial activity, A/mgPt: 0.31

Local O₂ resistance, S/cm: -25.9% (vs baseline)

Electrode ionomer thin film conductivity
- 8X vs. 825
- 12X vs. 1000

Process Improvement
- 18% power
 - [@0.067 mgPt/cm²]

Support stability: 5000+ cycles

Metal Stability
- (will improve with package optimization)
 - -39.6% ECSA
 - -69mV (0.8 A/cm²)
 - -39mV (0.5 A/cm²)

3M

- Initial attempts have combined Activity & conductivity gains with Support stability Metal stability
- Areas of focus/improvement Low initial surface area – increase this Metal stability Optimizing balance of parts
TASK 2: Powdered NSTF

Powdered NSTF
- Eliminates geometric constraint
- Requires new variables (Wh/C, I/C)

Task 2 Targets met: ECSA, SEF

New materials coming
- ECSA = 28-30 m²/g at 40°C
- 0.4 A/mgPt with no transmission metals

Technical accomplishments

<table>
<thead>
<tr>
<th>TARGET</th>
<th>Status</th>
<th>Key issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSA = 25 m²/g</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>Surface Roughness</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>Operating range</td>
<td>Complete</td>
<td>Ensure with downselects</td>
</tr>
<tr>
<td>Metal AST – ECSA</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>Support AST</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>Metal AST – 0.8 A/cm²</td>
<td>80 mV</td>
<td>H+ transport</td>
</tr>
<tr>
<td>Activity</td>
<td>0.31</td>
<td>Electrode Structure (Pt/Ir) Transition metal loss (Pt-alloy)</td>
</tr>
</tbody>
</table>
TASK2: dNSTF, Performance Root Cause

ANL, LANL, LBNL, NREL, ORNL, MTU, Tufts

Mid-High current performance loss

- Lower I/C improves high currents
- Lower Wh/C improves high currents
- PFIA improves @ high currents
- Local O2 transport EXCELLENT
- Agglomeration is SEVERE
- Proton Transport Poor and RH sensitive

Next slides show the above in detail

ANL work

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>vs</th>
<th>Type 2</th>
<th>>400nm Agglomeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-type</td>
<td>HSC</td>
<td></td>
<td>XC72</td>
<td>7X</td>
</tr>
<tr>
<td>%M/C</td>
<td>XC72</td>
<td></td>
<td>10V50E</td>
<td>50X</td>
</tr>
<tr>
<td>I/C</td>
<td>0.8</td>
<td></td>
<td>0.4</td>
<td>3X</td>
</tr>
<tr>
<td>Ionomer</td>
<td>825</td>
<td></td>
<td>PFIA</td>
<td>~2X</td>
</tr>
<tr>
<td>Electrode</td>
<td>dNSTF,</td>
<td></td>
<td>10V50E</td>
<td>~75X (500X for HSC)</td>
</tr>
<tr>
<td></td>
<td>XC72, I/C=0.4</td>
<td></td>
<td>Baseline</td>
<td></td>
</tr>
</tbody>
</table>

dNSTF electrode HIGHER agglomerated

So much performance loss
Only 15%ECSA loss!!!
TASK2,3: dNSTF, Performance Root cause

Reduced \(\text{O}_2 \) transport resistance
- More carbon, less ionomer
- I/C=0.8 to 0.4 reduced resistance ~31%
- Wh/C=2.5 to 1 0 reduced resistance ~15%

Best local transport achieved (NREL)
- NSTF25Pt, PFIA, I/C=0.4, Wh/C=1.0
- -39.6% vs. Baseline 10V50E
- -61.4% vs. Pt/HSC

Impedance verifies transport gains

Transport Gains = performance gains.

NREL, \(\text{O}_2 \)

GDS Curve
- 10V50E, 0.11Pt, 825, IS=0.6, WH/S=, SEF=58.8
- NSTF 25Pt, 0.208Pt, 825, IS=0.6, WH/S=1, SEF=45.9
- NSTF 25Pt, 0.245Pt, 825, IS=0.6, WH/S=2.5, SEF=50.5
- NSTF 25Pt, 0.21Pt, 825, IS=0.8, WH/S=1, SEF=40.8

LANL

H2-Air Impedance
- 100%RH, 150 kPa, 80C
- 800/1800 sccm
- 5 cm\(^2\) cell

NREL, \(\text{O}_2 \)

Baseline

Lower I/C Lower Wh/C

Higher Voltage

Voltage Level 0.34 Current Level 10.50 NSTF #2

Voltage Level 0.55 Current Level 10.50

3M

Technical accomplishments
TASK2,3: dNSTF, Performance Root cause

NREL / LANL /Tufts

Evaluating key variables
- Gas transport resistance: It's Good
- Change with P_{O_2} is small: Not kinetic
- H+ resistance (transmission line): Low & RH sens.
- Performance vs. RH (LANL): RH sensitive

Impedance in H_2/Air
- Low current densities, NSTF much worse
- High current densities, NSTF much better

Tufts performed CO stripping
- Disp. NSTF vs. M/C (10V50E)
- Ionomer coverage of whiskers likely low
 - Due to agglomeration?
 - Contributing to poor conductivity?

Dispersed NSTF is likely proton transport limited
TASK4: Tufts-MTU Electrode Transport Model

Cathode/Anode transport fluxes Model between the membrane and the gas channel

Electrode network approach

Calibration & Validation of the coupled model

Investigating impacts of whisker coverage by ionomer

- Impacts what the electrode pores see
- Impacts local conductivity
- Low coverage = more pore flooding

Currently 50% ionomer coverage on all Whiskers

80C, 80%RH, 7.5 psig
I/C=0.9, Wh/C=0.9

Prediction

80C, 80%RH, 7.5 psig
I/C=0.9, Wh/C=0.9
TASK 2: Best in Class performance

NSTF 25 ug/cm2 [PLANAR] + PFIA
- Best performance
- Mostly overcomes resistance loss issue
- Best local transport of any electrode tested (NREL)

NSTF 28 ug/cm2 [PLANAR] PtNiRu + IMIDE#1
- 0.31 A/mg$_{PGM}$, highest activity to date

NSTF 47/12 ug/cm2 [PLANAR] Pt/Ir + IMIDE#1
- 0.172 g/kW achieved without best in class package
- 78% activity retained in dispersed format
- Best local transport of any electrode tested [3M]
- 18% ECSA loss
- Can readily pass Support AST

Prediction

Achievement
SELECTED AMR Comments

Overall, project was good on approach and accomplishments

Presentation was weak on collaboration
- Many results came after 5/2018
- Collaborations shed light on many issues

Multiple comments implying 3M is “layering” NSTF to make a cathode
- This work focuses mainly on dispersing, not layering, NSTF

The future work could be more detailed, and durability should be more thoroughly addressed
- Hopefully this presentation corrected this

The link between NSTF and novel electrode ionomers is not clear.
- NSTF catalyst was seen as a means to achieving activity and durability targets

Why MASC and imide-based ionomers was chosen is not clear
- Multi-acid side chain ionomers are more conductive
- Imides offer path to higher O\textsubscript{2} permeability

AMR 2018

Overall Project Score: 3.2 (7 reviews received)

The vertical hash-lines represent the highest and lowest average scores received by projects in the sub-program.
Summary

TASK 1: IONOMER
- **Achieved project targets** (ionomer with >50% oxygen permeability & conductivity vs. 3M825 PFSA)
- Characterized new ionomer thin films, evaluated electrodes, tested CCM for performance, durability
- Showed PFIA 8X more conductive as a thin film vs. 825PFSA, allowing low I/C operation
- Imide ionomers showing mixed gains at low RH H₂/Air operation, minimal at 100% RH or H₂/O₂ operation

TASK 2: DISPERSED NSTF
- Exceptional metal AST shown with Pt/Ir NSTF electrodes but unusual “resistance-like” loss
- Entire team root causing “resistance like” – pointing to protonic conduction issue
- High electrode agglomeration may be contributing to poor whisker coverage by ionomer
- Local gas transport is excellent – lowering I/C and Wh/C raises performance
- Activity of 0.31 A/mgPt achieved

TASK 3: ELECTRODE INTEGRATION
- Low I/C electrodes with PFIA: 18-31% less transport resistance, up to 61% activity gains, improved power
- Achieved 0.36 A/mgPt with Alloy on Graphitized carbon.
- Achieved support stability targets, getting close to metal stability targets
- NSTF transition metals leach out in electrode lowering activity. Pt/Ir active catalyst will be pursued as a result.
 - **Achieved support stability targets, Achieved metal AST ECSA targets (NSTF)**

TASK 4: PNM model development in operation
- Looking into impacts of whisker coverage – and impact on water management.
- Will investigate agglomeration and ionomer properties on water management and performance.
- Look at whisker thermal differences vs. dispersed M/C catalysts.
Future Work / Key Challenges

Future Work

Key Items
- Resolve dispersed NSTF conductivity issue
- Link ionomer O\(_2\) perm to performance gains
- Optimize new ionomers + durable M/C catalysts
- Optimize processing of low I/C systems
- Complete CCM package optimization for best cathode
- Achieve performance + durability targets

Task 1: Ionomer
- Develop additional ionomer with novel endgroups
- LBNL: Look at super-MASC, IMIDE#6 with GISAXS
- Link bulk membrane oxygen permeability to areas of performance enhancement
- Incorporate more conductive MASC into electrode
- Tufts: Look at imide thin film ionic conduction
- Tufts: CO stripping of low I/C, processed electrodes

Task 2: Dispersed NSTF
- Continue processing to improve conductivity
- ALL: Investigate “un-agglomerated” disp. NSTF electrodes
- Improve ionomer coverage of NSTF whiskers
- Further optimize NSTF 28/12 Pt/Ir to achieve >0.35 A/mgPt
- Incorporate more active materials
- LANL: Define conductivity trends of disp. NSTF electrodes
- Tufts: CO stripping of “processed” NSTF electrodes

Task 3: Integration
- ALL: Explore processing impacts on low I/C, MASC materials
- ANL,NREL: Further explore performance vs. agglomeration
- LANL: Low I/C conductivity evaluations for M/C materials
- Continue to incorporate NSTF with new ionomers
- Explore new incorporation methods with NSTF
- Optimize activities of new durable catalysts
- If needed: integrate NSTF & dispersed M/C materials
- Tufts: Ionic tortuosity vs. processing for Low I/C

Task 4: Modeling
- MTU: Continue to build fidelity
- MTU/TUFTSRoot cause dispersed NSTF performance issue
- Investigate agglomeration on performance
- Integration low I/C data & identify optimal configuration
BACKUP
Task 3: dNSTF and Transition Metal Issue

Ni and Co leach into electrode pre-test
- PtNi Cathode ionomer is completely neutralized
- Co reduces local O_2 transport and performance

MITIGATION & Understanding Necessary
- Increase electrode ionomer & IEC
- Acid wash catalyst to remove excess Ni
- TMI operating window (NREL local transport)

Status: 1st Acid Treatments caused activity loss
- Similar result happen in ink with ionomer (acid)
- Shift focus more to non-transition metal catalysts (Pt/Ir)
- Work on heat treated NSTF for alloy retention

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>State</th>
<th>% Transition Metal Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtCoMn</td>
<td>Powder</td>
<td>100 (Co)</td>
</tr>
<tr>
<td></td>
<td>CCM/Untested</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Tested</td>
<td>20</td>
</tr>
<tr>
<td>PtNi</td>
<td>Powder</td>
<td>100 (Ni)</td>
</tr>
<tr>
<td></td>
<td>CCM/Untested</td>
<td>72.5</td>
</tr>
<tr>
<td></td>
<td>Tested</td>
<td>64</td>
</tr>
</tbody>
</table>

EXCESS Transition metal vs. CA IEC
TASK 1,3: Electrode Integration for M/C catalysts

Additional Metal AST Work

OPTIMIZING Durable Carbons

- I/C and IEC vs. durability
- **Lowering IEC increases durability**
- Tested from 620 to 1200 EW
- End of life performance significantly improved
- Lower I/C limit where high currents suffer

Graphitized carbon choice makes a significant difference in metal stability

Technical accomplishments
CO displacement Technique

- **Developed by Feliu:**
 - Constant potential is applied and zero-charge CO displaces adsorbing species on Pt. Oxidative or reductive current can be measured, depends on what type of species are displaced:

 \[
 Pt - Ca + CO \rightarrow Pt - CO + Ca^+ + e^- \\
 Pt - An + CO + e^- \rightarrow Pt - CO + An^-
 \]

- Measured displacement current densities are integrated. CO-adsorption takes place without change in oxidation state. We can then calculate the coverage using qstrip.

\[
q_{dis} = q_f - q_i \approx -q_i \\
\theta_{dis} = \frac{2 \times q_{dis}}{q_{strip}}
\]

AC+DC electrode Technique

- **DC Technique**
 - Easy to interpret data
 - Contact resistance and membrane resistance isolated
 - Protons pumped through membrane and PCL
 - **Method captures ionomer tortuosity**

- **AC technique**
 - Does not capture layer tortuosity
 - Double layer capacitive charging since no Pt present
 - Capacitive charging only at PEM/electrode interface

TASK1: Novel Ionomer Development

Ex-Situ vs. In-Situ

Imide-based materials show gains
- At H\textsubscript{2}/Air, sub-saturated, high stoic
- Bulk O\textsubscript{2} perm also better drier
- Imides #1, 2, 3, 6 tested

Imide not showing H\textsubscript{2}/O\textsubscript{2} activity gains

Results unlike 1200EW PFSA
- Shows H\textsubscript{2}/O\textsubscript{2} activity gains

<table>
<thead>
<tr>
<th></th>
<th>BULK FILM</th>
<th>Local O\textsubscript{2} Transport</th>
<th>Thin film Conductivity</th>
<th>In-cell Tests</th>
<th>Activity</th>
<th>dNSTF</th>
<th>Metal Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFIA & MASC</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IMIDES</td>
<td>YES</td>
<td>No, possibly low RH</td>
<td>Not Tested</td>
<td>H2/Air, <100% RH</td>
<td>Variable</td>
<td>Not Yet</td>
<td>No</td>
</tr>
<tr>
<td>Low I/C</td>
<td>---</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PFIA + Low I/C</td>
<td>---</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Focus is on Low surface area, durable carbons. Metal is on the surface & better interact with ionomer.
Acknowledgements

• **3M**
 - M. Lindell
 - F. Sun
 - J. Abulu
 - M. Yandrasits
 - A. Steinbach, M. Kurkowski
 - G. Weatherman
 - G. Thoma
 - M. Krueger
 - K. Struksheats
 - D. Stock
 - I. Khan
 - M. Guerra
 - S. Smith
 - G. Dahlke
 - M. Priolo

• **Michigan Technical University**
 - J. Allen
 - K. Tajiri
 - E. Medici
 - S. Abbou

• **FCPAD**
 - LBNL (A. Weber, A. Kusoglu)
 - NREL (KC Neyerlin, S. Kabir, T. Van Cleve)
 - ORNL (D. Cullen, K. More)
 - LANL (M. Mukundun, N. Macauley, R. Borup)
 - ANL (D. Myers, N. Kariuki)

• **Tufts University**
 - I. V. Zenyuk
 - D. Sabarirajan
 - S. Normile
 - J. Liu
 - Y. Qi