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Overview

Timeline Technlcal Barriers
* Project start date: Oct. 2018 O, transport through ionomer films
* Project end date: Dec. 2020 . Ionomer adsorption on catalyst
. Inaccessible catalyst in porous
* Percent Complete: 7% carbon
. Distribution and retention of IL in

catalyst layer
. Humidity tolerance at HCD

Budget Partners

* FY2019 Funding: $608,029 * Drexel: Maureen Tang

* Total Project Funding: $1,244,115 * Texas A&M: Yossef Elabd

* Cost Share: $250,380 (20.5%) * General Motors: Anusorn Kongkanand

* NREL: K.C. Neyerlin
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Relevance

a)

ionomer

Primary Technical Barriers

4 O, transport through ionomer thin films
O lonomer specific adsorption onto catalyst

O Inaccessible catalyst in porous carbon
supports

O Distribution and retention of IL in catalyst
layers

O Humidity tolerance at HCD (Pt utilization)

Pt Utilization

40 60
RH (%)
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Relevance

Objective:

The goal of this project is to develop a polymerized ionic liquid block co-polymer/ionic liquid (PILBCP/IL)
composite ionomer to replace traditional PFSA-based ionomers and address their associated limitations. The
expected outcomes include: (1) development of a cathode that meets DOE targets for low and high current density,
and (2) improved understanding of how interface engineering affects HCD performance

DOE :
: : Project
Metric Units  PtCo/KB IL-PtCo/KB 2020
Target
Target
PGM total loading (both electrodes) mg/cm? 0.125 0.085 <0.125 <
Mass activity @ 900 mMVir-free A/mgpem 0.6 0.6 >0.44 <
Loss in catalytic (mass) activity % loss 30% - <40% <
Performance at 0.8V (150kPa, 80°C) Alcm? 0.30 0.31 >0.3 <
Power at rated power (150kPa, 94°C) W/cm? 0.80 - >1.0 <
Power at rated power (250kPa, 94°C) W/cm? 1.01 1.05 - >1.2
PGM utilization (150kPa, 94°C) kW/gpem 6.4 - >8 <
PGM utilization (250kPa, 94°C) kW/gpcm 8.1 10 - >9.1
i mV loss at
Catalyst cycling (0.6-0.95V, 30k cycles) 0.8A/cm? 24 - <30 <
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Approach

/«  PILBCP synthesis )
* IL synthesis and screening
* Nafion and [MTBD][beti] baseline establishment
* In-situ/ex-situ screening of PILBCP/IL thin films
\* Create IL property and performance database

Task 1:
Development of

FY2019 Q1-Q4

Go/No-Go: >1.0 W/cm? at 250 kPa in 25 cm? MEA with two different PILBCP/IL
chemistries

Capacitive deposition of IL
Ex-situ ion and gas transport measurements
through PILBCP/IL

 Composite ionomer loading effects

* |In-situ Pt utilization: Vulcan vs. HSC

 MEA level ionomer and catalyst durability
Limiting current for proton and oxygen

K transport /

Project End Goal: >1.2 W/cm? at 250 kPa in 50 cm? MEA, <10% power loss after
AST

ﬁ Catalyst ink formulation and rheology \

Task 2:
MEA Performance
and Durabilit

FY2020 Q5-Q8
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Approach

PILBCP-IL Composite lonomers for High Current Density Fuel Cell Performance
DE-FOA-0001874 Topic 3A-4 lonomer (Control #: 1874-1642) Q1[Q2|Q3[Q4]Q5|Q6[Q7|Q8

Task Team

Program Timeline

Program Start Date

Quarterly Report and Milestones
Yearly Go/No-Go Decision
Annual Program Review

Final Report

Phases (Budget Periods)
Phase 1: PILBCP/lonic Liquid Composite lonomer Development
Phase 2: High Current Density Performance and Stability with PILBCP/IL Compositie lonomers

|'

Task 0 - Program Managament and Planning

0.1 Project Kick-off Meeting All
0.2 Project Management, Planning, Review, and Reporting All
0.3 Final Report and Review Meeting All

Task 1 - Development of PILBCP/IL Composite lonomer
1.1 Materials Development

1.1.1 PILBCP lonomer Synthesis TAMU
1.1.2 IL Screening and Synthesis Drexel
1.2 Characterization

1.2.1 Establish Baseline with Nafion/[MTBD][beti] and Pt Drexel/GM/NREL
1.2.2 Ex-situ Screening of PILBCP/IL Composite Thin Films Drexel/TAMU
1.2.3 In-situ Characterization NREL/GM
Task 2 - Composite PILBCP/IL MEA Performance and Stability

2.1 Materials Development

2.1.1 Catalyst Ink Formulations and Rheology NREL/TAMU
2.1.2 Capacitive Deposition of IL Drexel/TAMU
2.2 Ex-situ Characterization: Transport through PILBCP/IL Composites Drexel
2.3 In-situ Characterization

2.3.1 PILBCP/IL Loading Effects NREL/GM
2.3.2 Pt Utilization: Vulcan vs. High Surface Area Carbon NREL/GM
2.3.3 Composite lonomer and Catalyst Durability at OCV and AST GM
2.3.4 Limiting Current for Proton and Oxygen Transport NREL
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Collaboration

Drexel

UNIVERSITY

IL development
Half-cell: activity, durability, diagnostics
Thin film transport measurements

A

4
K gt ) m— PILBCP synthesis
. . "\s ,,» hl?:— Ex-situ lonomer characterization
MEA diagnostics S§7

MEA performance testing Ink development

MEA diagnostics
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COI’]CG pt Polymerized lonic Liquid Block

Copolymer (PILBCP)

lonic Liquid (IL)
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Sulfonated Domain QO ILinterphase:

1. Improved ORR

3. Limited specific adsorpti
O PILBCP polymer:

1. IL domain improves inte
decreasing interfacial re

2. Improved retention of IL

2. Low humidity proton conduction

on

raction with IL interphase,
sistances

interphase

3. Sulfonated domain is H;O* transport block

4. Domain organization in the absence of PFSA
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Accomplishments and Progress:
Previous EERE Results — FC144 O NS

CH3
[MTBD] [beti]
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0 MEA performance improvement due primarily to higher ORR activity in presence of
[MTBD][beti]

O Humidity tolerance is improved in presence of protic IL. Utilization of internally located Pt in
porous carbons at low humidity is enhanced due to anhydrous protonic conductivity of ILs
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Accomplishments and Progress:
Previous EERE Results — FC144

ECSA Retained Post RDE-ADT Pt Dissolution from ICP-OES
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O Presence of IL thin film on Pt/V and Pt/HSC Pt/HSC 10k cycles 0.95V UPL

leads to significant improvements in ECSA  [#'F TR

retention during RDE AST (0.6-0.95 and 0.6-1.1 ‘ : feda
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O Hydrophobicity and low metal IL solubility — fg% , :

of IL decrease Pt dissolution during RDE ? B it .

AST . L5

DREXEL UNIVERSITY
College of

Engineering



https://0.6-0.95

Accomplishments and Progress:

Previous EERE Results — FC144
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Accomplishments and Progress: o O

0]
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Capacitive Deposition of IL e N \\ O// N /
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O Alternating potential and electrolyte composition
sequentially attracts and condenses IL thin films on E vs. RHE
conductive electrodes
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Accomplishments and Progress:
Capacitive Deposition of IL

< 2 nm coatings
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Accomplishments and Progress:
Nafion Specific Adsorption on Pt(111)

Nafion/IL Thin Films on Pt(111) CO displacement
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Future Work

U

U

Synthesis and ex-situ/half-cell screening of PILBCP and IL
Establish property and performance baseline for Nafion/[MTBD][beti]

Create database for ORR performance and general IL properties for a range of IL
chemistries

Develop testing protocol for ex-situ measurement of gas and ion transport properties of
PILBCP/IL composite thin films

Further develop methodology for conformal integration of IL thin films into three-
dimensional catalyst layers

Catalyst ink rheological optimization for non-PFSA based ionomer
In-situ MEA testing: performance, diagnostic, durability

lonomer loading and carbon morphology effects

Any proposed future work is subject to change based on funding levels
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Future Work

Task 1:
Development of

Materials Development

M1.2
o PILBCP ionomer synthesis
o IL synthesis and screening
Characterization M1.1
M1.3
o Establish baseline with M1.4
Nafion/[MTBD][beti]

o Microelectrode screening of
PILBCP/IL composite thin films

o In-situ characterization

M1.2: Demonstrate 20% ORR improvement with ILs

M1.1: Demonstrate half-cell and microelectrode testing protocols, establish baseline
M1.3: Identify/characterized three PILBCP/IL chemistries for MEA testing

M1.4: Validate ex-situ O, perm and ORR with MEA testing
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GNG1:

Demonstrate >1.0
W/cm? at 250 kPa in
25 cm? MEA with two
PILBCP/IL chemistries




Future Work

Task 2:

Materials Development

MEA Performance

Subtask 2.1

and Durabilit

o Catalyst ink formulation
and rheology

o Capacitive IL deposition

M2.2
M2.1

Ex-situ Characterization
Subtask 2.2 >

o Transport through PILBCP/IL

composites

M2.1: Demonstrate capacitive deposition

reaches ORR activity of Pt/C+IL o
M2.2: Ink formulations and PILBCP/IL loading

M2.3: Demonstrate >40% Pt utilization at RH

<80% ©
M2.4: Demonstrate catalyst durability with

PILBCP/IL at OCV and AST
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In-situ Characterization
Subtask 2.3 >

PILBCP/IL loading
Pt utilization

Composite ionomer/catalyst
durability

M2.2
M2.3
M2.4

Project end goal:
Demonstrate >1.2
W/cm? at 250 kPa in
50 cm?2 MEA, <10%
power loss after ADT




Future Work:
Ex-Situ Transport Measurements

PILBCP/IL
— composite
— thin film
= ?
Generator Collector
U Separate interfacial kinetics and transport with 600503 ; 1 -
precise control of electrode geometry g toeas | /, | Jf / [ | z
. . £ 1 | I 4.00E-05 =
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Future Work:
PILBCP Synthesis

Morphology & Properties \

(Function\ / Chain Architecture \ /

Proton Chemical Structure
Conductive
— LUK
(0]
+ © 2 * High Proton Conductivity

IL-philic

* High IL-philic
O

TFSI
k //// / k High Electrochemical Stabilitu
. J

U Advantages of PILBCP ionomers

1. High proton conductivity 4. Enhanced humidity tolerance
2. Low degree of swelling 5. Optimal interface with IL interlayer
3. Favorable Do,/ C, 6. Broad library of IL chemistries
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Future Work:
PILBCP Synthesis

(1)
*g - O ”
S
a g N#\TFSI
H,O DMSO-d, IN—
aromatic protons
. . b |®)
(V) J\J\A o AN (V)
(y__d /\J\/L,\ l M iso i
CDCl,-d ©5 a N"\
b
c’\/N
() N2
() Jf\/\ A
11 10 9 4 3 2 1 0

"H NMR (500 MHz, 23 °C) Chemical Shift (ppm)

DREXEL UNIVERSITY
College of

Engineering




Summary

O PILBCP Composite lonomers

Improved ORR

Low humidity proton conduction

Limited specific adsorption

IL domain improves interaction with IL interphase, decreasing interfacial resistances
Improved retention of IL interphase

Sulfonated domain is H;O* transport block

N o o bk~ whRE

Domain organization in the absence of PFSA

U Technical Targets

DOE

Metric Units PtCo/KB IL-PtCo/KB 2020 rolect
Target Target
PGM total loading (both electrodes) mg/cm? 0.125 0.085 <0.125 <«
Mass activity @ 900 mVir-free Almgeeu 0.6 0.6 >0.44 <
Loss in catalytic (mass) activity % loss 30% - <40% <
Performance at 0.8V (150kPa, 80°C) Alem? 0.30 0.31 >0.3 <
Power at rated power (150kPa, 94°C) Wicm? 0.80 - >1.0 <
Power at rated power (250kPa, 94°C) Wicm? 1.01 1.05 - >1.2
PGM utilization (150kPa, 94°C) kW/greu 6.4 - >8 <
PGM utilization (250kPa, 94°C) kW/greu 8.1 10 - >91
Catalyst cycling (0.6-0.95V, 30k cycles) "c‘)\l;ff;n?t 24 . <30 <«
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