Merchant Hydrogen at Scale: A Technical-Economic Case Study of the Potential for Nuclear Hydrogen

PI: Uuganbayar Otgonbaatar, Exelon
Co-PIs: Tony Leo, FuelCell Energy
Cristian Rabiti, Shannon Bragg-Sitton,
Richard Boardman (Presenter)
Mark Ruth, Amgad Elgowainy, Alice Muna
April, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline and Budget

- Project Start Date: 09/01/2018
- Project End Date: 09/30/2019
- Total Project Budget: $1,575,000
 - Total Recipient Share: $650,000
 - Total Federal Share: $925,000
 - Total DOE Funds Spent*: TOTAL
 - NE - $137K
 - ANL - $90K
 - NREL- $150K
 - SNL- $23K

Barriers

- Barriers addressed
 - Hybrid operation of nuclear power plants
 - Thermal energy integration with high temperature electrolysis
 - Commercial manufacturing pathway for electrolysis modules

CRADA Partners

- Exelon Corporation
- FuelCell Energy
- Idaho National Laboratory
- National Renewable Energy Laboratory
- Argonne National Laboratory
- Sandia National Laboratory

DOE Sponsors

- DOE-EERE Fuel Cell Technology Office
- DOE-NE Crosscutting Technologies Development, Integrated Energy Systems Program
Nuclear Energy is the only contributor to global clean energy supply that is a carbon-free, scalable energy source that's available 24 hours a day.

Increases in variable wind and solar energy and low-cost natural gas impact baseload nuclear power generation stations; a new operating paradigm is needed for these plants to maintain profitability.

Hydrogen production with nuclear energy may increase plant revenue.

The problem

Could this be the solution?

Relevance

This project aims to evaluate the technical and economic potential for expanding the markets for existing nuclear reactors. This evaluation provides a basis for converting baseload nuclear plants into hybrid plants that produce hydrogen, resulting in commercial investments and industry growth in the United States.
1. Assess hydrogen market in region of **Exelon Nuclear Reactor**

2. Evaluate technical and economic feasibility of integrated nuclear-renewable-hydrogen plant operation

3. Complete preliminary engineering design of thermal and electrical energy integration with **FuelCell Energy’s High Temperature, Steam Electrolysis (SOEC)**

4. Evaluate logistics of dynamic hydrogen production, storage, delivery, and use by industry (e.g., steel manufacturing)

5. Complete investor-grade study with preliminary design

6. Issue DOE project report

Approach

- **Month 1**: Go/No-Go based on Hydrogen Market Evaluation
- **Month 1**: Go/No-Go decision based on Scenario Analysis

SCS-Exelon Utility CRADA: Evaluation of Hydrogen Market Potential

Exelon and FCE H2@Scale CRADA: Project Planning, Grid Dynamics and Electricity Price Profile Projections; Analysis Tool Development

Scenario Analysis Using RAVEN

Preliminary Eng. Design & Investment Report
Roles & Responsibilities

- **NREL/Exelon** - Provide grid pricing (LMP); cost of energy projections
- **ANL** - Determine local hydrogen markets, hydrogen storage & delivery systems & costs
- **INL/Exelon/FuelCell Energy** - Thermal/electrical integration, electrolysis plant design process modeling, economic pro forma calculations
- **SNL/Exelon** - Hydrogen storage, plant safety codes and standards
Accomplishments

- Preliminary Market Assessment Completed
 - Specific nuclear plant site selected
 - Electricity market assessment
 - Thermal integration study completed by Exelon
 - Generic high temperature electrolysis plant developed
 - H2A modeling completed
 - Aspen™ Process Modeling of initial SOEC System
 - Local hydrogen markets identified
 - High Temperature Electrolysis (SOEC) Plant Design Layout and LWR interfaces completed by FuelCell Energy

- Project Progress Meeting January 30, 2019
- Go/No-Go Decision (passed!)
- Project on schedule and budget
Accomplishments

- Hydrogen demand assessment 90% complete
- Hydrogen, production, storage and delivery cost analysis completed using H2A

![Graph showing Annual Hydrogen Demand]

Leverages FCTO Analysis by ANL

“The Technical and Economic Potential of H2@Scale within the United States”
Analysis Approach: Projecting LMPs

- Establish fleet buildout using ReEDS capacity expansion model
- Translate each ReEDS buildout year into a PLEXOS production cost model database
- Run each PLEXOS model to obtain the resulting LMPs for our region of interest
- Transfer LMPs to INL for techno-economic analysis

Accomplishments

- NREL Coordinated with Exelon and Constellation to select key parameters
- Approach to project in the future Local Marginal Price established
Accomplishments

Initial Aspen™ modeling for generic high temperature electrolysis plant (SOEC)

Aspen Process Economic Analyzer (APEA)

- Cost estimating software that provide CAPEX estimates and OPEX estimates for comparing and screening multiple process schemes.
- Integrated with process simulators ASPEN HYSYS and Aspen Plus.
- Map the simulator unit operations to APEA, e.g.,

Heat Recuperation Improves efficiency
Accomplishments

- **H2A model prediction and sensitivity studies completed**

LWR/HTE (SOEC)
- 1191 MWe
- 755 tons/day \(\text{H}_2 \) (639 tons/day \(\text{H}_2 \) with an operating capacity efficiency of 84.7%)
- $403/kWe (DC power input)
- TCI of $434 M

SMR
- 639 tons/day \(\text{H}_2 \) with an OCF of 90%
- TCI of $292 M
Accomplishments

High Temperature Electrolysis Plant Design Layout

Nuclear Plant to SOEC H2 Plant System Architecture

- SOEC Rx Water – 240,000 kg/h
- Thermal Steam ∆100 MWe
- Δ100 MWe
- HX System
- H2 Separation
- Hydrogen 26,650 kg/h
- Heated Feedstock
- Nuclear Power Plant
- Power conditioning
- Electricity 1,000 MWe
- SOEC H2 Plant
Collaboration & Coordination

- CRADA Project involves 2 Industries, 4 National Labs
 - Subcontractors to Exelon: Constellation
 - DOE NE-EERE Partnership
 - DOE-EERE / Fuel Cell Technology Office
 - DOE-NE / Crosscutting Technologies Development, Integrated Energy Systems Program

- Bi-weekly project meetings; Regular offline meetings

- Intellectual property protection managed under CRADA

- Proprietary / Business Sensitive material managed

Exelon and FuelCell Energy are supportive of H2@Scale and DOE-NE activities
- Exelon and FCE participation: January NE-LWRS Stakeholder Engagement
- Exelon Presentation: February FCTO “Make” Webinar

Cooperation and confidentiality underscores this CRADA

The team is focused on the outcomes that will accelerate business success

Remaining Barriers & Challenges

- The project is set to engage industrial users of hydrogen
- Aspen™ modeling for the investor grade report is a significant undertaking
- INL RAVEN system optimization modeling is dependent on and requires timely completion of Phase 2 grid LMP projections
Proposed Future Work

- The project has entered Phase 2
- NREL grid modeling is underway with input from Exelon & Constellation
- INL Aspen™ Modeling has commenced with input from FCE

Analysis Approach: Projecting LMPs

1. Establish fleet buildout using ReEDS capacity expansion model
2. Translate each ReEDS buildout year into a PLEXOS production cost model database
3. Run each PLEXOS model to obtain the resulting LMPs for our region of interest
4. Transfer LMPs to INL for techno-economic analysis
Proposed Future Work

- RAVEN “system scale and operating optimization” will be completed in FY19-Q4 and FY20-Q1
- SNL will conduct safety assessment and provide guidance relative to siting a hydrogen plant near a nuclear plant
- Project team will begin discussion with hydrogen off-takers
- Investor report due to Exelon and FuelCell Energy FY19-Q4

Example RAVEN Optimization of Nuclear, Wind, Natural Gas, Battery, Hydrogen Plant integrated system
Summary

- This CRADA addresses new market opportunities for nuclear energy at a time when existing reactors are experiencing diminishing revenues.
- Preliminary results indicate a light-water reactor hybrid producing electricity and hydrogen can be profitable and may spur commercialization of H2@Scale.
- This work is an example of a successful DOE cross-cutting effort.

- **This project is on schedule and on budget**
- **CRADA partners are working well together**
- **Technology transfer includes model sharing with the industrial partners**
- **The investor-grade report will help to accelerate technology commercialization and capital investment in real projects**
- **The DOE goal of $2.00/kg H₂ appears to be possible with technology acceleration**
- **Clean hydrogen will be a game changer**

Yes, LWR Hydrogen hybrids could this be the solution!