HydroGEN: Photoelectrochemical (PEC) Hydrogen Production

Nemanja Danilovic, Todd Deutsch, Huyen N. Dinh, Adam Z. Weber
April 30, 2019
Annual Merit Review
Advanced Water-Splitting Materials (AWSM)
Relevance, Overall Objective, and Impact

AWSM Consortium
6 Core Labs:

Accelerating R&D of innovative materials critical to advanced water splitting technologies for clean, sustainable & low cost H₂ production, including:

- Photoelectrochemical (PEC)
- Solar Thermochemical (STCH)
- Low- and High-Temperature Advanced Electrolysis (LTE & HTE)

Production target <$2/gge

Hydrogen
HydroGen Consortium

III-V PEC systems
- Bandgap tuning
- Buried junctions
- Durability testing
- Bubble management
- Non-PGM catalysts
- Membranes

Particle PEC systems
- Reactor designs
- Selective catalysis
- Gas separation
- Mass transfer

Thin-film PEC systems
- Absorbers and interfaces
- Processing compatibility

Sunlight to H₂
- Interfaces
- Catalysts
- STH efficiency
- Stability
- Balance of plant
- Reactor designs
- Techno economics
- Life cycle assessment

Looking Inward: Crosscutting challenges that bind us together

Looking Outward: Unique materials development frontiers

Higher TRL

Lower TRL
Synopsis of Photoelectrode-based Approaches

Approach 1: Stabilize High Efficiency Systems

Approach 2: Enhance Efficiency in Thin-Film Materials

DOE Targets: >1000h @STH 10-25%

Projected PEC Cost: $2 - 4/kg H₂

Approach 3: Develop 3rd Generation Materials and Structures

Theory & Characterization

HydroGEN: Advanced Water Splitting Materials
Approach – HydroGEN EMN

DOE

EMN

HydroGEN

Core labs capability nodes

Data Hub

FOA Proposal Process

• Proposal calls out capability nodes
• Awarded projects get access to nodes

https://www.h2awsm.org/capabilities
Approach – EMN HydroGEN

PEC: Photoelectrochemical Electrolysis

Barriers
- Cost
- Efficiency
- Durability

PEC Node Labs
- NREL
- Berkeley Lab
- Sandia National Laboratories
- Lawrence Livermore National Laboratory

Support through:
- Personnel
- Equipment
- Expertise
- Capability
- Materials
- Data

PEC Projects
- University of Hawaii
- Rutgers University
- Stanford University
- University of Michigan
Collaboration: 56 PEC Nodes, 2 Supernodes

- Analysis: 2
- Characterization: 15
- Computation: 8
- Synthesis: 5

Analysis: 2
Computation: 8
Characterization: 15
Synthesis: 5

Analysis: 2
Computation: 6
Characterization: 13
Synthesis: 5

Analysis: 3
Computation: 3
Characterization: 3
Synthesis: 2

- Nodes comprise equipment and expertise including uniqueness
- Category refers to availability and readiness
- Many nodes span classification areas

16 (13 by FOA) Nodes utilized
18 Lab PIs engaged
100s of files on Data Hub

HydroGEN: Advanced Water Splitting Materials
Collaboration: HydroGEN PEC Node Utilization

<table>
<thead>
<tr>
<th>Lab</th>
<th>Node</th>
<th>Hawaii</th>
<th>Stanford</th>
<th>Rutgers</th>
<th>Michigan</th>
<th>Super</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLNL</td>
<td>Material Design and Diagnostics</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>LLNL</td>
<td>Interface Modeling</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LBNL</td>
<td>Multiscale Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NREL</td>
<td>Structure Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NREL</td>
<td>MOVPE</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NREL</td>
<td>CIGS</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NREL</td>
<td>Combi/High Throughput</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NREL</td>
<td>Surface Modifications</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Computation

Material Synthesis

Electrolyte potential (V) and current density (stream line)
Collaboration: HydroGEN PEC Node Utilization

<table>
<thead>
<tr>
<th>Lab</th>
<th>Node</th>
<th>Hawaii</th>
<th>Stanford</th>
<th>Rutgers</th>
<th>Michigan</th>
<th>Super</th>
<th>DMREF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBNL</td>
<td>Corrosion</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>LBNL/NREL</td>
<td>RDE/Cell Testing</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBNL</td>
<td>Prototyping</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LBNL</td>
<td>Photophysical Characterization</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NREL</td>
<td>Surface Analysis Cluster Tool</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NREL</td>
<td>PEC Characterizations</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>LBNL</td>
<td>On-Sun Testing</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NREL</td>
<td>On-Sun Efficiency Benchmarking</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NREL</td>
<td>Corrosion Analysis of Materials</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>LBNL</td>
<td>In situ APXPS and XAS</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Characterization

HydroGEN: Advanced Water Splitting Materials
Goals:

- To develop unassisted water splitting devices that can achieve > 20% solar-to-hydrogen (STH) efficiency.
- Devices that can operate on-sun for at least 2 weeks.
- Devices that can provide a path toward electrodes that cost $200/m² by incorporating earth-abundant protective catalysts and novel epitaxial growth schemes.

Accomplishments in BP1

Go/No-Go #1: Photoelectrode that achieves >10mA/cm² under 1 sun for >100h

Go/No-Go #2: Unassisted PEC water-splitting with non-precious metal HER catalyst that achieves STH >5% under 1 sun

Focus of BP2

Fabrication Approach towards DOE Targets

Go/No-Go #1:

Photos in BP1 and BP2 show progress towards the goals.

https://h2awsm.org/capabilities/sun-photoelectrochemical-solar-hydrogen-benchmarking
HydroGEN: Advanced Water Splitting Materials

Best-in-class Platinum Group Metal-free Catalyst Integrated Tandem Junction PEC Water Splitting Devices
Rutgers University #P160

High-Performance (HP) devices

Goal: >10% STH, > 100h durability

- Electolyte
 - 4H⁺ O₂
 - 2H₂2H₂O

- Ni₅P₄ TF-eCAT HER
- LiCoO₂ TF-eCAT OER

- GaInP₂/GaAs Tandem devices
- TiN thin film (TF) protection layer

Goals:

High-Value (HV) devices

Goal: ~10% STH, > 100h durability

- Light
- p-i-n
- p-n⁺

- LiCoO₂ TF catalyst
- TF Protection layer
- Silicon

- Perovskites (Inorganic-organics or oxynitrides)

Accomplishments in BP1

Successful TF integration of Ni₅P₄/TiN on GaInP

- STH = 11.5%
- > 120 h duration (half-cell)

Focus of BP2

HP devices

- STH >12% by 2nd GEN upright tandem + window layer
- Extend the tandem device stability > 2days

HV devices

- Demonstrate half-cell performance with perovskites absorbers & eCATS.
Project Vision
Strengthen theory, synthesis and advanced characterization “feedback loop” to accelerate the development of efficient materials for H₂ production.

Project Goal
Develop innovative technologies to synthesize and integrate chalcopyrites into efficient and low-cost PEC devices.

Accomplishments in BP1
1) Materials efficiency/cost barriers
 - Printable CuInSe₂ with high conversion efficiency
 - Photoconversion efficiency > 70% of theoretical max (GNG #1/2)

2) Materials durability barrier
 - WO₃ ALD coatings (3 nm) on 1.8 eV CuGa₃Se₅
 - WO₃
 - CuGa₃Se₅
 - Mo
 - Glass

Focus of BP2
1) Materials efficiency/cost barriers
 - Expend printable CuInSe₂ baseline process to novel wide bandgap chalcopyrites e.g. Cu(In,B)Se₂ with 40-60% B content
 - Cu(In,Al)Se₂ with 20-40% Al content
 - Theoretical prediction of Cu(In,B)Se₂ bandgap as a function of boron content

2) Materials integration barrier
 - Demonstrate chalcopyrite-based tandem device integration with exfoliation/transfer techniques

Addressing materials efficiency, durability & integration barriers through multi-disciplinary research.

Project Team
- N. Gaillard (Device integration)
- C. Heske (Spectroscopy)
- T. Jaramillo (Catalysis/Corrosion)
- T. Ogitsu (Theory)
- J. Cooper (Carrier dynamics)
- K. Zu (absorbers)
- A. Zakutayev (junctions)
- T. Deutsch (benchmarking)
Goal: Develop Si-based low cost tandem photoelectrodes to achieve high efficiency (>15%) and stable (>1,000 hrs) water splitting systems

Approach: (i) The use of Si and GaN, the two most produced semiconductors, for scalable, low cost manufacturing; (ii) The incorporation of nanowire tunnel junction for high efficiency operation; (iii) The discovery of N-rich GaN surfaces to protect against photocorrosion and oxidation

Accomplishments in BP1

First demonstration of functional Si/InGaN tandem photoelectrode

Focus of BP2

Design, modeling, epitaxy/ synthesis, testing, and spectroscopic and kinetic studies of InGaN/Si double-junction photoelectrodes:

- Achieve Si-based low cost PEC water splitting device with STH >10%
- Achieve stable operation >500 hrs by using N-rich GaN self-protection
Goal: Validated multiscale modeling to understand OER across pH scale using a modeling framework on IrO₂ informed and validated by experiments

- AP XPS
- RDE
- Microelectrode

OER rates and mechanism

- Surface intermediate coverage
- E_a and ΔG_{rxn} for each elementary step

Catalyst surface structure

Species activity near the catalyst

DFT calculations

Microkinetic model

Species flux at catalyst surface

Continuum transport

Concentration profiles

MD/DFT simulations

Species concentration near double layer

Double-layer structure
Accomplishments:

- Developed methodology and intersections between the mathematical models
- Transfer of surface states and topology in vacuum to solvent simulation
- Transfer of energy barriers to microkinetics
- Microkinetics incorporated into continuum transport simulations
- Established ab-initio computational spectroscopy methods and experiments to validate theoretical structural models
- Initial measurements of kinetic rates and surface species on IrO\textsubscript{2}
OER Supernode: Future Work

• Experiments on \(\text{IrO}_2 \)
 – Measure OER kinetics in alkaline, acid, and neutral (buffer) solutions using RDE
 – Measure OER kinetics with alkaline and acid ionomers in microelectrode setup
 – Measure and quantify surface species using ambient-pressure XPS and concomitant modeling

• Calculations
 – Calculate free-energy barriers and reaction mechanisms as a function of
 • Applied potential
 • Electrolyte composition
 • Species concentration
 • Surface coverage
 – Estimate the effect of pH variation and/or bias potential on the OER reaction pathways
 – Examine possibility of site-exchange for OER on \(\text{IrO}_2 \)

• Incorporate the knowledge gained in the multiscale modeling framework and compare to experimental data
Goal: Understand integration issues and emergent degradation mechanisms of PEC devices at relevant scale, and demonstrate an integrated and durable 50 cm² PEC panel.

PEC Supernode Approach

LBNL
- PEC Cell Scale up
- Commercial PVs
 - 1 cm²
 - 4 cm²
 - 8 cm²

NREL
- PV Cell Scale up
 - 0.1 cm²
 - 1 cm²
 - 4 cm²
 - 8 cm²

Benchmarking
- In situ degradation and characterization
- Emerging Degradation Pathways
- Modeling
PEC Supernode: Results

Scale up of LBNL PEC Devices
1 cm² PEC

Scale up of NREL PV/PEC Cells
0.1 cm² PV

Accomplishments:
• Benchmarking PV and PEC cell performance between Labs
• PV fabrication scale up from 0.1 to 1 cm²
• PEC vapor cell scale up from 1 to 4 cm²
PEC Supernode: Future Work

PV scale up

- Developing GaInP/GaAs growths on a newer 2” reactor
 - GaInP quality not quite as good yet, but we are making progress
- In the process of testing the uniformity of the IV curves for tandems over a 2” wafer
- Upcoming plans to make processing masks for 4 cm² and 8 cm² devices
- Characterize freshly prepared PVs and after PEC testing

PEC scale up

- Continue scale up and evaluation of 4 cm² vapor and liquid PEC cells
- Translate to 8 cm² PEC cells
- Benchmark performance and durability with NREL
- On sun and diurnal testing

Degradation and Modeling

- Integrate in situ durability testing via ICPMS
- Visualization of gas and liquid water bubble formation in vapor/liquid cells and feed modeling effort
- Model emergent degradation mechanisms and define cell geometries
Engagement with 2B Team

- Collaboration with 2B Team Benchmarking Project

- All HydroGEN PEC node capabilities were assessed for AWS technology relevance and readiness level

- PEC data metadata definitions exchanged

- PEC questionnaire responses collated and disseminated
 - Defining: baseline materials sets, test cells, testing conditions
 - Published on the DataHub

- 2B working groups and annual meeting
Future Work

- Leverage HydroGEN Nodes at the labs to enable successful budget period 2 activities
 - Increased durability and lifetime
 - Decrease cost
- Conduct case studies and integrated research in 2 supernodes
 - PEC scaleup and integration
 - OER multiscale modeling
- Enable and work with possible new seedling projects
- Work with the 2B team and PEC working group to further establish testing protocols and benchmarks
- Utilize data hub for increased communication, collaboration, generalized learnings, and making digital data public
- Leverage community resources
Summary

• Supporting 4 FOA projects with 13 nodes and 11 PIs
 – Synthesis, benchmarking, modeling, characterization
 – 100s of files on the data hub and numerous exchanged samples
 – Personnel exchange of postdocs, students, and PIs to the labs

• Working closely with the project participants to advance knowledge and utilize capabilities and the data hub

• Projects demonstrate improvements in durable, less expensive materials with high performance and improved durability

• Future work will include continuing to enable the projects technical progress and develop & utilize lab core capabilities

• Supernode research underway to integrate nodes and systematic exploration of critical PEC-related questions
Acknowledgements

Authors
Adam Weber
Todd Deutsch
Nemanja Danilovic
Huyen Dinh

PEC Project Leads
Eric Garfunkel
Tom Jaramillo
Nicolas Gaillard
Zetian Mi

Research Teams
Acknowledgements

PEC Supernode Team

Todd Deutsch
James Young
Myles Steiner
Dan Friedman

Adam Weber
Frances Houle
Nemanja Danilovic
Francesca Toma
Tobias Kistler
Guosong Zeng

Lien-Chung Weng
David Larson
Jefferey Beeman

Best Practices in Materials Characterization

PI: Kathy Ayers, Proton OnSite (LTE)
Co-PIs: Ellen B. Stechel, ASU (STCH);
Olga Marina, PNNL (HTE);
CX Xiang, Caltech (PEC)
Acknowledgements

OER Supernode Team

Adam Weber
Nemanja Danilovic
Lien-Chung Weng

Ethan Crumlin
David Prendergast

Ross Larsen
Mai-Anh Ha
Shaun Alia

Tadashi Ogitsu
Brandon Wood
Tuan Anh Pham