Material-Process-Performance Relationships in PEM Catalyst Inks and Coated Layers

P.I. - Michael Ulsh
Presenter - Scott Mauger
National Renewable Energy Laboratory
April 30, 2019

DOE Hydrogen and Fuel Cells Program
2019 Annual Merit Review and Peer Evaluation Meeting

TA008

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline and Budget

• Project start date: 10/1/16
• FY18 DOE funding: $224,000
• FY19 planned DOE funding: $0

Barriers

<table>
<thead>
<tr>
<th>Barrier</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Lack of high-volume MEA processes</td>
<td>$20/kW (2020) at 500,000 stacks/yr</td>
</tr>
<tr>
<td>H. Low levels of quality control</td>
<td></td>
</tr>
</tbody>
</table>

Partners

• Argonne National Laboratory
 – Debbie Myers
• Colorado School of Mines
 – Svitlana Pylypenko
• Proton OnSite
 – Chris Capuano
• Pajarito Powder
 – Alexey Serov and Barr Zulevi
Relevance: Project Addresses MYRD&D Plan Milestones

<table>
<thead>
<tr>
<th>Task 1: Membrane Electrode Assemblies</th>
<th>Task 5: Quality Control and Modeling and Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2 Develop processes for direct coating of electrodes on membranes or gas diffusion media. (4Q, 2017)</td>
<td>5.5 Develop correlations between manufacturing parameters and manufacturing variability, and performance and durability of MEAs. (4Q, 2018)</td>
</tr>
<tr>
<td>1.3 Develop continuous MEA manufacturing processes that increase throughput and efficiency and decrease complexity and waste. (4Q, 2017)</td>
<td></td>
</tr>
</tbody>
</table>

- Roll-to-roll (R2R) is the lowest cost/highest throughput method for production of FC/LTE materials
- R2R coating techniques require different ink formulation and have different physics than lab-scale processes
- Many researchers/producers do not have access to the infrastructure to understand how the conditions and processes of R2R will impact their materials
- Results directly relevant to researchers and producers
Relevance:
Project Success Has Led to Additional DOE Projects

- **AMO Roll-to-Roll Consortium (TA007, 5/1/19, 11:30 A.M.)**
 - Lead for Fuel Cell Core Lab Project
 - Lead for CRADA with Proton OnSite
- **HydroGen (PD148, 4/30/19, 8:30 A.M.)**
 - LTE/Hybrid Supernode
 - Supporting three 2A projects (Proton OnSite, Northeastern, ANL)
- **ElectroCat (FC160, 4/30/19, 8:30 A.M.)**
- **HyET H2@Scale CRADA (H2006, 4/30/19 6:30 P.M., poster)**
 - “Membrane Electrode Assembly Manufacturing Automation Technology for the Electrochemical Compression of Hydrogen”
- **3M FY19 FOA Award (TA026, 4/29/19, 6:30, poster)**
 - “Low-cost, High Performance Catalyst Coated Membranes for PEM Water Electrolyzers”
- **Peroxygen Systems** – AMO-funded SBV
Approach: Study Transition from Lab-Scale to Scalable Electrode Production

Lab Scale – Ultrasonic Spray

- Dilute ink (~0.6 wt% solids)
- Ultrasonic mixing
- Sequential build up of layers
- Heated substrate
- Vacuum substrate

Large Scale – Roll-to-Roll (R2R)

- Concentrated ink (~4.5-15 wt% solids)
- Shear mixing
- Single layer
- Room temp. substrate
- Convective drying

Used to demonstrate new materials and for fundamental studies

Needed to demonstrate scalability of materials and MEA/cell designs, and industrial relevance
Approach:
Integrated Approach for Processes Scale-Up

Unique Aspects and Capabilities of this Project

Ink Formulation
- Catalyst
- Ionomer
- Solvents
- Dispersion method

Ink Characterization
- Rheology
- Dynamic Light Scattering
- Zeta Potential
- USAXS

Electrode Fabrication
- Coating Method
- Drying Rate/Temp
- Substrate

In Situ Electrode Characterization
- Fuel cell performance
- Impedance spectroscopy
- Transport measurements

Ex Situ Electrode Characterization
- Electron microscopy
- X-ray tomography

Typical R&D Method
Approach: Project Schedule and Milestones

<table>
<thead>
<tr>
<th>Qtr</th>
<th>Date</th>
<th>Milestone/Deliverable (as of 3/4/2019)</th>
<th>Type</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY18</td>
<td>6/2018</td>
<td>Characterize impacts of coating flow types (slot – pressure driven vs. gravure – extensional) on catalyst layer performance.</td>
<td>QPM</td>
<td>MET after FY18 AMR</td>
</tr>
<tr>
<td>FY18</td>
<td>9/2018</td>
<td>Characterize influence of ink composition (solids content, solvent, support type, catalyst material) on catalyst ink rheology, particle size, stability, and coatability.</td>
<td>QPM</td>
<td>MET</td>
</tr>
<tr>
<td>FY19</td>
<td>12/2018</td>
<td>Perform ink development studies of unsupported LTE catalysts to understand influence of solvent and catalyst materials on ionomer-catalyst interactions.</td>
<td>QPM</td>
<td>MET</td>
</tr>
<tr>
<td>FY19</td>
<td>3/2019</td>
<td>Characterize influence of coating flow types on catalyst layer morphology.</td>
<td>QPM</td>
<td>MET</td>
</tr>
<tr>
<td>FY19</td>
<td>6/2019</td>
<td>Determine influence of solvent formulation on ionomer adsorption on catalyst/support.</td>
<td>QPM</td>
<td>On track</td>
</tr>
<tr>
<td>FY19</td>
<td>9/2019</td>
<td>Evaluate ink formulations, drying conditions, and substrates to reduce crack formation in fuel cell and electrolysis catalyst layers coated using scalable methods.</td>
<td>QPM</td>
<td>On track</td>
</tr>
</tbody>
</table>
Accomplishments and Progress: Characterized Influence of Coating Method on Performance

Pros
- High coating rates
- High uniformity (±5%)
- Closed system
- Wide range of viscosities
- Simple control of coating thickness

Cons
- Complex
- Rheology must be tuned for each process

Ink Formulation
- Pt/HSC (TKK TEC10E50E) – 3.2 wt%
- Nafion 1000EW (0.9 I/C)
- Water/1-propanol (70/30 or 25/75 v/v)

MEA Materials
- GDL: Freud. H23C8
- Memb.: Nafion NR-211 (25 µm)

Coating
- 1 m/min
- Oven: 80 °C

Slot Die Coating
- Catalyst layers coated directly onto gas diffusion media
- 1 m/min at 10 cm wide
- Coatings used the same:
 - Ink formulation
 - Web speed
 - Drying temperature
 - Materials

Gravure Coating
- High coating rates
- Very high uniformity (±2%)
- Very thin liquid films
- Patterns
- Simpler operation

Pros
- High coating rates
- Very high uniformity (±2%)
- Very thin liquid films
- Patterns
- Simpler operation

Cons
- Smaller viscosity range
- Coating thickness less easily adjusted

Die

Pump

Substrate

Web Direction

Gravure Cylinder

Ink

Substrate

Web Direction

Cylinder Direction
Accomplishments and Progress: Characterized Influence of Coating Method on Performance

Fuel Cell Performance

H$_2$/Air, 150kpa/150kpa, 80°C, 100%/100% RH, 50 cm2

- **Slot die coating results in higher performance than gravure, regardless of ink formulation**
- Coating method does not impact kinetics or site accessibility
- Polarization curves suggest performance differences are due to differences in Ohmic losses between MEAs
- May also be differences in transport – needs further exploration

<table>
<thead>
<tr>
<th>Method</th>
<th>ECSA (m2/gPt)</th>
<th>$i_m^{0.9V}$ (mA/mgPt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot die</td>
<td>63.1 ± 2.7</td>
<td>395 ± 21</td>
</tr>
<tr>
<td>Gravure</td>
<td>64.5 ± 2.3</td>
<td>395 ± 22</td>
</tr>
</tbody>
</table>

\[\Delta E = 23.6 \text{ mV} \]

\[\Delta R_{CL} = 33.1 \text{ mΩ} \cdot \text{cm}^2 \]

\[\Delta E = i\Delta R_{CL} \]

\[\Delta E \left(0.8 \frac{A}{cm^2}\right) = 26.5 \text{ mV} \]

H$_2$/N$_2$ Electrochemical Impedance Spectroscopy

- EIS used to understand differences in proton conductivity
- **Model fitting and analysis shows gravure results in higher effective catalyst layer resistance**
Accomplishments and Progress: Utilizing Electron Microscopy to Evaluate R2R Coated Electrodes

Slot-die Coated Electrode

- **TEM analysis shows slot-die coating produces favorable electrode morphology**
 - Electrode shows good porosity
 - Pt and F (Nafion) are well distributed throughout the electrode
- Do not observe penetration of catalyst layer into MPL
- Further imaging and analysis on-going to establish links between catalyst layer morphology and performance
Accomplishments and Progress: Determined Influence of Solvent Formulation on FC Performance

Slot Die

$H_2/\text{Air}, 150\text{kpa}/150\text{kpa}, 80^\circ\text{C}, 100%/100\%\text{RH}, 50\ \text{cm}^2$

![Graph 1](#)

- **Ink Formulations**
 - Pt/HSC (TKK TEC10E50E) – 3.2 wt%
 - Nafion 1000EW (0.9 I/C)
 - Water/1-propanol (70/30 or 25/75 v/v)

- **Components**
 - Cathodes: 0.12-0.13 mg$_{\text{Pt}}$/cm2
 - Anodes: 0.1 mg$_{\text{Pt}}$/cm2
 - GDL: Freudenberg H23C8
 - Membrane: Nafion NR211 (25 µm)

- **Preparation**
 - Cathodes directly coated on GDL using R2R coater and dried in 80 °C oven

- **Observations**
 - Water-rich inks are superior, regardless of coating method, or electrode type (GDE vs CCM), carbon-support type, or concentration
 - Collaborating with K.C. Neyerlin/FC-PAD to further understand electrochemical mechanisms for performance differences and relate results to ink characteristics (FC135)
Accomplishments and Progress: Related Ink Formulation to Electrode Structure

Dynamic Oscillatory Shear Rheology

\[G = G' + iG'' \]
- elastic modulus (\(G' \))
- viscous modulus (\(G'' \))

- Utilized oscillatory shear rheology to characterize influence of solvent composition on microstructure
- Modifying the solvent composition changes the amount of aggregation
- Determined link between ink microstructure to electrode microstructure
 - More aggregated ink (more gel-like) leads to larger solid particles sizes in electrode
Accomplishments and Progress:
Determined Electrosteric Stabilization Effects of Nafion on IrO₂ Catalyst Ink

Procedure to remove free ionomer

![Diagram showing the process of removing free ionomer](image)

This procedure is required to limit study to catalyst particles

Zeta Potential

![Graph showing zeta potential](image)

Dynamic Light Scattering

![Graph showing dynamic light scattering](image)

USAXS of Concentrated Ink

![Graph showing USAXS of concentrated ink](image)

- Zeta potential measurements show Nafion is adsorbing on catalyst particle surface and providing electrostatic stabilization
- Stabilization of IrO₂ leads to significant decrease in effective catalyst particle size
- USAXS measurements of concentrated inks verify DLS and zeta potential measurements of dilute inks
Accomplishments and Progress: Characterized Interactions in IrO$_2$-Nafion Ink

Small Amplitude Oscillatory Shear Rheology

- **F** - elastic modulus (G')
- **□** - viscous modulus (G'')

<table>
<thead>
<tr>
<th>Frequency [rad/s]</th>
<th>G'</th>
<th>G''</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.1</td>
<td>0.01</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Rheology shows addition of low-level of ionomer stabilizes IrO$_2$ particles, consistent with other measurements
- **Higher levels of ionomer addition lead to more gel-like behavior indicating more interparticle interactions, suggestive of aggregation**
- Aggregation may be due to depletion flocculation, indicating there is free, dispersed ionomer – more analysis needed to confirm
Accomplishments and Progress: Initiated Research on Electrode Crack Mitigation

Influence of Substrate – MPL Roughness

<table>
<thead>
<tr>
<th>SGL 29BC</th>
<th>Uncoated</th>
<th>Coated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>![coated.png]</td>
</tr>
<tr>
<td>Freud. H23C8</td>
<td>![uncoated.png]</td>
<td>![coated.png]</td>
</tr>
</tbody>
</table>

Catalyst Layer Details
- 50 wt% Pt/HSC, 1000 EW Nafion, 0.9 I:C
- Catalyst loading: 0.12 mg\textsubscript{Pt}/cm2
- Catalyst Layer Thickness: 3-4 µm
- Drying time: < 1 min in 80°C convection oven

Substrate surface influences catalyst layer cracking
- Cracks in MPL can propagate into direct-coated catalyst layer
- Crack-free catalyst layers can be coated on uncracked MPL

Future Work
- Continue work on Pt/C
- Explore other systems: PGM-Free, LTE
- Understand critical thickness limits
- Research ink formulation strategies to mitigate cracking
Accomplishments and Progress: Responses to Previous Year Reviewers’ Comments

• This project was not reviewed last year
<table>
<thead>
<tr>
<th>Institution</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Renewable Energy Laboratory - Prime</td>
<td>Ink formulation studies, electrode production and coating, rheology, MEA performance testing, advanced diagnostics</td>
</tr>
<tr>
<td>Mike Ulsh, Scott Mauger, Sunilkumar Khandavalli, Jason Pfeilsticker, Min Wang, Radhika Iyer, K.C. Neyerlin</td>
<td></td>
</tr>
<tr>
<td>Argonne National Laboratory</td>
<td>Small angle x-ray scattering of catalyst inks – critical for understanding rheology measurements and catalyst ink microstructure</td>
</tr>
<tr>
<td>Debbie Myers, Jae Hyung Park, Nancy Kariuki</td>
<td></td>
</tr>
<tr>
<td>Colorado School of Mines</td>
<td>Electron microscopy of catalyst materials and electrodes</td>
</tr>
<tr>
<td>Svitlana Pylypenko, Samantha Medina</td>
<td></td>
</tr>
<tr>
<td>Proton OnSite</td>
<td>LTE catalysts and materials</td>
</tr>
<tr>
<td>Chris Capuano</td>
<td></td>
</tr>
<tr>
<td>Pajarito Powders</td>
<td>PGM-free catalyst powders</td>
</tr>
<tr>
<td>Alexey Serov and Barr Zulevi</td>
<td></td>
</tr>
<tr>
<td>Oak Ridge National Laboratory</td>
<td>Assisting with electron microscopy</td>
</tr>
<tr>
<td>Karren More, Dave Cullen</td>
<td></td>
</tr>
</tbody>
</table>
Challenges and Barriers

• Improve understanding of correlations between ink formulation, coating methods, and electrode properties and performance
• Extend learnings from Pt/C to LTE and other materials systems
• Expand capabilities to study new catalyst/material systems
• Perform studies to demonstrate the scalability of new MEA materials
Proposed Future Work

• Continue research to understand influence of coating methodology on performance and morphology
• Continue development of techniques and understanding of ionomer-catalyst interactions in inks
• Evaluate ink formulations, drying conditions, and substrates to reduce crack formation in fuel cell and electrolysis catalyst layers coated using scalable methods (FY19 Q4 QPM)
• Perform early-stage fundamental R&D for PGM-free, AEM-FC, and LTE catalyst systems

Any proposed future work is subject to change based on funding levels
Objective: Study material-process-performance relationships for R2R PEMFC/EC cell materials to understand relationships between process science and material properties and performance

Relevance: Addressing MYRD&D milestones. This project is enabling for other DOE-funded research

Approach: Understand impacts of ink formulation, coating and drying physics on ink microstructure, coatability, film morphology, electrochemistry, proton conduction, and mass transport

Accomplishments:
- Determined that slot-die coating results in higher performance MEAs than gravure coating
- Related catalyst ink microstructure to electrode microstructure
- Improved methods for dynamic light scattering and zeta potential to better understand catalyst – ionomer interactions
- Initiated work on electrode cracking – showed that MPL cracks can induce catalyst layer cracks
Technical Back-Up Slides
Accomplishments and Progress: Utilized Electron Microscopy to Evaluate R2R-Coated Electrodes

Comparison of Coating Method

Slot Die

Gravure

Fewer aggregates in slot die coated electrodes

Comparison of Ink Formulation

75 wt % H₂O

25 wt % H₂O

Fewer aggregates with water-rich ink formulation

Colorado School of Mines
Accomplishments and Progress:
Utilized Electron Microscopy to Evaluate R2R-Coated Electrodes

- TEM analysis shows slot-die coating produces favorable electrode morphology
 - Electrode shows good porosity
 - Catalyst and ionomer are well distributed throughout the electrode
Does susceptibility of Pt-alloy catalysts to leaching in acids impact shelf-life stability of catalyst inks?

Steady Shear Rheology

- Same inks measured over a period of 8 weeks
- Pt/HSC shows no change in rheology, indicating no change in aggregation – **stable**
- **PtCo/HSC shows increase in viscoelasticity, indicating increased aggregation – unstable**
 - Co ions could screen surface charges and reduce electrostatic stabilization

Oscillatory Shear Rheology