Project ID: TA011
FedEx Express Hydrogen Fuel Cell Extended-Range Battery Electric Vehicles

PI: Phillip Galbach, FedEx Express – Global Vehicles
May 1, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Project Main Objectives

<table>
<thead>
<tr>
<th>DOE Project Objectives</th>
<th>Project Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate / deploy hydrogen and fuel cell technologies in real-world environments.</td>
<td>20 parcel delivery trucks will operate one shift 260 days annually for approximately 10 hours per day.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ancillary Objectives</th>
<th>Project Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate 5,000+ hours</td>
<td>Over approx. 1.92 years, this amounts to approximately 5,000 hours per truck. Total fleet activity is 100,000 hours annually. (Numbers represent minimum.)</td>
</tr>
<tr>
<td>Reduce petroleum consumption</td>
<td>Each diesel truck uses 2,600 gallons per year. The program will reduce diesel consumption by 100,000 gallons over ~1.92 years.</td>
</tr>
<tr>
<td>Reduce emissions</td>
<td>A net of 270 metric tons of CO2 will be prevented.</td>
</tr>
</tbody>
</table>

Potential Expansion

<table>
<thead>
<tr>
<th>Similar Assets & Duty Cycles (count)</th>
<th>7000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Utilization Range (miles)</td>
<td>20k - 50k</td>
</tr>
<tr>
<td>Approx Annual Fuel Displaced (gal)</td>
<td>14M</td>
</tr>
<tr>
<td>Annual CO2 Avoided (Metric Tons)</td>
<td>69,500</td>
</tr>
</tbody>
</table>
Program Overview

Hydrogen Fuel Cell Extended-Range Battery Electric Vehicles Demonstration

- $3.0 million from Department of Energy
- Integration of fuel cells into 20 battery electric pickup and delivery vehicles, PUDs
 - BP1 – 1 truck
 - Design
 - Integrate & test fuel cell systems
 - Safety
 - Communication
 - Performance
 - Reliability
 - Validate in revenue service
 - BP2 – 19 trucks
 - Integrate hydrogen fuel cell systems
 - Operate in revenue service in Memphis, TN and locations in CA
Program Overview

Timeline
- Grant awarded – October 2015
- Kickoff meeting – May 2016
- Project end – March 2021
- Project completion - < 5%
 - Phase 1 – 99.9% complete

Barriers
- Unknown ability to meet safety, performance & reliability needs
- Variable energy requirements
 - Route differences
 - Parasitic losses (HVAC, ancillary systems, effects of temperature)
- Fuel availability

Budget
- DOE – $3.0M
- Partners – $3.367M

Partners
- U.S. Department of Energy
- FedEx Express – Prime recipient
- Plug Power – Fuel cell manufacturer
- Workhorse Group – Truck manufacturer
Objective

• Budget Period 1 Go/No-Go Decision Point
 – **Availability:** Operate the first unit under real world conditions with a down time of the truck due to the fuel cell system or fuel cell integration no more than 7%.
 • Reliability must be 93% or greater to be considered a viable alternative.
 – **Sufficient Energy:** Parcel delivery truck with a battery and fuel cell that are sized for optimal use to increase the range to 150 miles under a typical FedEx load profile.
 – **Safety:** Safety criteria able to be met.
Relevance: Mileage Management

- **Range** – Speed – Time
 - Right Technology
 - Right Duty Cycle
- Payload – Stops – Volume

Composite Body PUD
- Hybrid: 15,000–30,000
- Composite Body PUD: 10,000–40,000
- Existing W700: up to 20,000
- Sprinter Type: 10,000–60,000
- Improved battery range: up to 16,000
- eREV: > 16,000
- Panel Van: > 40,000

Miles per year
- 5,000
- 10,000
- 15,000
- 20,000
- 25,000
- 30,000
- 35,000
- 40,000
- 45,000
- 50,000
- 55,000
- 60,000

Existing W700
- up to 20,000

Sprinter Type
- 10,000–60,000

Improved battery range
- up to 16,000

eREV
- > 16,000

Panel Van
- > 40,000

First Gen EV
- up to 16,000

Hybrid
- 15,000–30,000
Approach

Fuel Cell Chassis Integration

Commissioned Durability Test Body Installation

Data transmitted to NREL Results evaluated Utilized on Routes
Approach: Workhorse Chassis

- 80 kWh Battery Packs
- TM4 Traction Motor
 - 200 kW
 - 2100 N-m
Technical Accomplishments and Progress:
Power Generation / Vehicle Connection

10 kW Fuel Cell System x 2
- Power: 20 kW total
- Voltage Output: 48VDC

DC/DC Converter x 2
- Buck / boost dual functionality
- Voltage Output: 310-430VDC

Vehicle HV Junction Box
- Common bus for batteries and fuel cell / converter output
Milestones

<table>
<thead>
<tr>
<th>Element Type (Task or Milestone)</th>
<th>Task Number (Milestone Number)</th>
<th>Subtask Number (if applicable)</th>
<th>Task Title (Milestone Description)</th>
<th>Task or Milestone Completion Date</th>
<th>Original Planned</th>
<th>Revised Planned</th>
<th>Actual Completed</th>
<th>Current % Complete (0-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>5</td>
<td>5.1</td>
<td>Durability Testing</td>
<td>6/1/2017 12/13/2017 1/25/2018</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.2</td>
<td>Delivery of Truck #1 to FedEx Menands for testing</td>
<td>6/19/2017 12/13/2017 1/25/2018</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.3</td>
<td>Driver/Personnel Training</td>
<td>6/20/2017 12/14/2017 1/23/2018</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.4</td>
<td>Commissioning</td>
<td>6/21/2017 12/15/2017 1/30/2018</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.5</td>
<td>Test and Validation of Unit #1 vehicle and powertrain requirements</td>
<td>6/21/2017 12/13/2017 1/25/2018</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6</td>
<td>Data Analysis</td>
<td>9/30/2017 4/30/2019</td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Element Type (Task or Milestone)</td>
<td>Task Number (Milestone Number)</td>
<td>Subtask Number (if applicable)</td>
<td>Task Title (Milestone Description)</td>
<td>Task or Milestone Completion Date</td>
<td>Original Planned</td>
<td>Revised Planned</td>
<td>Actual Completed</td>
<td>Current % Complete (0-100)</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>------------------------------------</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6</td>
<td>Data Analysis</td>
<td>9/30/2017 4/30/2019</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.1</td>
<td>Data Transmission to DOE/NREL-1st Feb-Mar</td>
<td>9/30/2017 4/15/2018 4/27/2018</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.2</td>
<td>Data Transmission to DOE/NREL-2nd Apr-Jun</td>
<td>7/15/2018 7/27/2018</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.3</td>
<td>Data Transmission to DOE/NREL-3rd Jul-Sep</td>
<td>10/31/2018 11/10/2019</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.4</td>
<td>Data Transmission to DOE/NREL-4th Oct</td>
<td>11/30/2018 11/30/2018</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.5</td>
<td>Data Transmission to DOE/NREL-5th Nov</td>
<td>12/31/2018 1/4/2019</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.6</td>
<td>Data Transmission to DOE/NREL-6th Dec</td>
<td>1/31/2019 1/31/2019</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.7</td>
<td>Data Transmission to DOE/NREL-7th Jan</td>
<td>2/28/2019 2/28/2019</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.8</td>
<td>Data Transmission to DOE/NREL-8th Feb</td>
<td>3/31/2019 3/22/019</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>5</td>
<td>5.6.9</td>
<td>Data Transmission to DOE/NREL-9th Mar</td>
<td>4/30/2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestone</td>
<td>5</td>
<td>5.0</td>
<td>Evaluation Document of First Unit Performance</td>
<td>9/30/2017 4/30/2019</td>
<td>70%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Accomplishments and Progress: Overall Availability

Data from Mar 2018 – Feb 2019

FCET is planned for service everyday
Technical Accomplishments and Progress: Availability by Month

- PM truck
- PM electric drive
- PM fuel cell
- FC System Availability
- FC System Running 8 mo. Avg

Availability by Month:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>PM</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Truck</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
<tr>
<td>Electric Drive</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>
Technical Accomplishments and Progress: FCET Labor Hours by System

![Bar chart showing labor hours by system and month]

- Tires
- General air system repairs
- Axles, wheels, and drive shaft
- Lighting
- HVAC
- Frame, steering, and suspension
- Brakes
- PMI
- Propulsion-related
- Cab, body, and accessories

FedEx Express
Technical Accomplishments and Progress: FCET Labor Hours by Sub-System

- Electric drive
- Fuel System
- Cooling
- Air Intake
- Cranking/charging
- Electrical
- FC System
Technical Accomplishments and Progress: Fuel Cell Availability

FedEx FCET - Fuel Cell Availability

- Availability (%)
- FC Downtime (%)
- 8mo Average Availability (%)

Jan '18: 100.00
Feb '18: 42.86
Mar: 57.14
Apr: 68.89
May: 76.04
Jun: 82.03
Jul: 53.33
Aug: 74.96
Sep: 79.13
Oct: 82.11
Nov: 84.35
Dec: 89.70
Jan '19: 92.12
Feb '19: 92.08
Mar '19: 98.75

ASOf: 3/25/2019

FedEx Express
Accomplishments and Progress: Responses to Last Year’s Reviewer Comments

1. **Approach to performing the work** – Personnel turnover.
 - The turnover in personnel has hurt the project, as commented last year. However, despite the turnover the team has been able to get the vehicle on the road for testing and complete the data collection.
 - The turnover has disrupted the priority and commitment to the project.

2. **Collaboration and Coordination** – Vehicle Maintenance partner
 - The Vehicle maintenance partner is defined as FedEx and Workhorse.

 - Personnel turnover was addressed above.
 - The fuel cell performance was poor in the beginning. June had an incident. Since then it has been near perfect.
Collaborations

Project Sponsor
Department of Energy

Vehicle and Fuel Cell Data Collection:
NREL

Vehicle Safety Regulations:
US Department of Transportation

Hydrogen Safety Advisors:
Pacific Northwest National Laboratory

Hydrogen Safety Panel

Prime Recipient

Fuel Cell Manufacturer: Plug Power Inc.
EV Chassis and Powertrain Manufacturer: Workhorse Group Inc

Subrecipients
Remaining Challenges and Barriers

• Reliability
 • Support to keep the vehicle on the road.
 – Location of the Vehicle vs the location of the partners.

• Budget Period 2
Current status

- First Unit Validation
 - Evaluation and Documentation of the first unit.
Future Work

Budget Period 1 Milestones

• Finish Data collection
• Make a Recommendation Go/No-Go

Budget Period 2 Milestones

• Remaining fleet builds
• Remaining Fleet integration
• Continued Deployment and Operation
Summary

Approach
• Add FC / Replace GenSet

Relevance
• Availability/Reliability
• Sufficient Energy
• Safety

Progress
• Overall Availability/Reliability
• FC Reliability

Proposed Future Work
• Make a recommendation Go/No-Go
• Plan BP2
Thank You.

Questions?