Advanced Manufacturing Office Valri Lightner, Deputy Director, Advanced Manufacturing Office G. Jeremy Leong, Technology Manager, Advanced Manufacturing Office manufacturing.energy.gov Presentation for the Hydrogen and Fuel Cell Technologies Office Annual Merit Review May 2020 # **EERE's Advanced Manufacturing Office (AMO)** U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY Advanced Manufacturing Office \$395M FY20 WHAT WE DO Partner with industry, academia, states, and National Laboratories to catalyze R&D and the adoption of advanced manufacturing technologies and practices R&D Projects FY20 = \$151M R&D Consortia FY20 = \$199M Technical Assistance FY20 = \$45M # MANUFACTURING # **AMO Guiding Principles** AMO works to increase energy and material efficiency in manufacturing to drive energy productivity and economic growth. Uses roughly 25% of the nation's primary energy Represents nearly 80% of energy use in energy-intensive sectors Generates 11% of the U.S. GDP and 13 million jobs Incurs \$200 billion in energy costs annually # A M O # GOALS - Improve the productivity, competitiveness, energy efficiency, and security of U.S. manufacturing - Reduce the life cycle energy and resource impacts of manufactured goods - Leverage diverse domestic energy resources and materials in U.S. manufacturing, while strengthening environmental stewardship - Transition DOE-supported innovative technologies and practices into U.S. manufacturing capabilities - Strengthen and advance the U.S. manufacturing workforce # Framework to Shape AMO's Portfolio # **AMO Strategic Process** # **Stakeholder Input** # **National Laboratory Listening Sessions** Forward-looking conversations to collaborate on new R&D opportunities and investigate future manufacturing needs and trends - The National Laboratory complex is well-positioned to address national needs in manufacturing. EX: CRITICAL MATERIALS | ENERGY STORAGE | CIRCULAR ECONOMY - Each National Laboratory brings unique domain expertise to solve key U.S. manufacturing challenges. - National Laboratories offer specialized equipment, expert staff, infrastructure, and platforms for industry collaboration. - Sessions underscored the need for advances in computation and materials science to transform U.S. manufacturing. # KEY STRATEGIC CAPABILITIES High Performance Computing Machine Learning Manufacturing Demonstration Chemical Separations Testing and Validation (for materials, devices) **Fundamental Systems Methods** AMO will harness the individual National Laboratories' capabilities and the strength of the complex to inspire discovery and secure U.S. leadership in the future of manufacturing. # **Strategic Analysis: Technical White Papers** - Draw on collaborative office knowledge on a topic area - Frame and refine ideas using a bottom-up / top-down approach - Clarify opportunity areas and uncover linkages - Lay out the current state of the field, the challenges and barriers that exist, the opportunity to address the challenge, and a potential strategy for a path forward for 2021 and beyond # Sample Topics #### NATIONAL NEEDS - Critical minerals - Water security - Energy storage #### **FUNDAMENTAL SYSTEMS METHODS** - Carbon capture - Electrification - Circular economy #### FUNDAMENTAL AND APPLIED SCIENCE - Chemical processes - Additive manufacturing - Power electronics # **Funding Opportunities and Investment Portfolio** AMO's funding opportunities and selected projects: - Address national needs - Fund congressionally directed efforts - Support the manufacturing enterprise of the future # **FUNDING OPPORTUNITIES** FOAs | PRIZES | LAB CALLS - AMO's strategic framework guides development of new funding topics through: - Strategic Analysis - Stakeholder Workshops - National Laboratory Listening Sessions #### **INVESTMENT PORTFOLIO** R&D PROJECTS | CONSORTIA | PRIZE WINNERS - AMO actively manages a diverse portfolio, evaluating projects regularly for technical merit, energy impact, and progress against office goals through: - Peer Review - Introspective Portfolio Analysis - Verification & Validation; Field Validation # **FY20 Funding Opportunities** # AMO FY20 MULTI-TOPIC FOA: ≤ \$67M - Next-generation manufacturing processes that improve energy efficiency in energy-intensive and energydependent industries, including steel manufacturing - Modular, hybrid, or catalytic processes to improve energy efficiency in chemical manufacturing - Connected, flexible, and efficient manufacturing facilities, products, and energy systems # BATTERY MANUFACTURING LAB CALL ≤ \$12M* Collaborate with industry on battery technology scale-up *Joint with the Vehicle Technologies Office #### BOTTLE FOA: ≤ \$25M* - Highly recyclable or biodegradable plastics - Novel methods for deconstructing and upcycling existing plastics - BOTTLE Consortium collaborations *Joint with the Bioenergy Technologies Office #### **WATER SECURITY** Water Resource Recovery Prize: ≤ \$1M Two-phased competition for novel, systems-based solutions for resource recovery at small-to-medium-sized water resource recovery facilities COMING SOON – Water securityspecific FOA: ≤ \$20M # CRITICAL MATERIALS FOA: ≤ \$30M #### R&D for: - Field validation and demonstration - Next-generation extraction, separation, and processing technologies #### TRANSPORTATION FOAs - ≤ \$15M*: Polymer Composites for Vehicle Applications - *Joint with the Vehicle Technologies Office) - ≤\$15M**: Electrolyzer Manufacturing R&D ≤\$15M**: Advanced Carbon Fiber for Compressed Gas Storage Tanks - **Joint with the Hydrogen and Fuel Cell Technologies Office # Flexible Combined Heat and Power Systems ## TODAY'S ELECTRIC GRID Power system serves residential, commercial, and industrial loads, and interconnects with a growing number of intermittent renewable energy resources #### **NEW CONCEPT** - Flexible CHP system provides electricity and thermal energy for plant processes and operations - Flexible CHP system provides additional generating capacity when grid demand increases and/or renewable resources are not available. Flexible CHP also can provide other services, such as frequency regulation, to keep the grid stable # **Carbon Fibers and Composite Materials** #### The Carbon Fiber Technology Facility CFTF - Only Open Access State-of-the-Art Facility in the U.S - 42,000 ft² facility with production capacity of 25 tons/year of fiber from multiple precursors in various forms The Carbon Fiber Technology Facility (CFTF) serves as a national resource to assist industry in overcoming the barriers of carbon fiber cost, technology scaling, and product and market development. CFTF is intended to be the bridge from R&D to deployment and commercialization of low-cost carbon fiber - Demonstrate carbon fiber production using lower-cost precursors and reduced energy - Enable development of domestic commercial sources for production of low-cost fiber or high-volume composites applications - Formulate a Workforce Development program for carbon fiber and advance composites workforce #### Key Thrusts - Establish and perform collaborative R&D projects to reduce technical uncertainties of CF manufacturing process - Investigate potential alternative carbon fiber precursors - Investigate CF intermediate forms and technical challenges in composite applications - Establish artificial intelligence-based framework and correlate process data to product characteristics - Investigate and develop process measurement, sensing, and control methods # Carbon Fiber Technology Facility – N95 Filter Production # ADVANCED EQUIPMENT AND EXPERTISE - AMO's investment in the CFTF created conditions for the team to react nimbly to develop new, scalable methods to meet demand for N95 filter material. - Experts de-risked a specific and reproducible set of parameters, making them adoptable by the manufacturing industry. #### AGILE RESPONSE TO N95 DEMAND - Work with N95 inventor Dr. Peter Tsai to tackle real-time challenges with conversion - Partner with engine, filtration, and power generation manufacturer Cummins to convert their commercial melt blowing lines to potentially produce millions of pounds of N95 material - Open source the process parameters for industry, enabling textile and filter manufacturers with melt blown machines to start making N95 filters # Advanced Roll-to-Roll (R2R) Manufacturing #### **R2R Objectives** - Develop technologies to reduce the cost per manufactured throughput of continuous R2R manufacturing processes. - Develop in-line instrumentation tools that will evaluate the quality of single and multi-layer materials in-process #### **R2R Manufacturing Collaborations** #### **Ink Dispersion Characterization** - Understanding how ink composition and interactions to determine ink structure as well as device performance - Optimize ink stability and processing (e.g. coatability and interactions with substrate) #### **Multilayer Coating** - Develop in-line multilayer coating on thin films (<10 µm) with high yield (>95%) - Increased throughput, decreased energy intensity, decreased footprint, decreased CapEx #### **Modeling and Simulation** Continuum scale models for process design and scale-up - Deposition models - Drying models - User-interface and training #### **Accomplishment** #### Eliminated Need for PEMFC Cathode Overlayer - PEMFC single-layer and multi-layer electrode performance based on ink characterization studies - Property Models - Characterization - Fabrication # Manufacturing's Role in Energy Storage Grand Challenge GOAI U.S. global leadership in energy storage utilization and exports with a secure domestic manufacturing supply chain independent of foreign sources of critical materials D O E Accelerate scale-up of emerging manufacturing processes Improve critical materials supply chain resilience Address **technical barriers** in production and manufacturing # **Technologies and Supply Chains** Meeting the Energy Storage Grand Challenge goal will require a combination of research and technology development across the manufacturing supply chain. Raw materials Refined materials Component manufacturing Energy storage system manufacturing End user Recycling/ Reuse/ Disposal R&D ARE Manufacturing process intensification Critical materials use & sourcing Roll-to-roll manufacturing capabilities Membrane manufacturing processes New materials & manufacturing processes for harsh service environments Water desalination & purification Combined Heat & Power systems # POTENTIAL Flow batteries Thermal energy storage Lithium-based batteries Non-lithium-based solid state batteries Hydrogen generation & storage Compressed air energy storage Pumped hydro Synthetic fuels (e.g. synbiogas) And others # **DOE Education & Workforce Initiatives** # **HIGH SCHOOL** National Science Bowl[®] competitions - Community College Internships Program - Science Undergraduate Laboratory Internships Program # **GRADUATE** - Graduate Student Research Program - Interdisciplinary and industriallyrelevant traineeships **Energy Storage Internship Program** # **FACULTY** - Visiting Faculty Program for under represented institutions - Curriculum development for degree programs # **WORKFORCE** - Lab-Embedded Entrepreneurship Program - Industrial Assessment Centers undergraduate training (31 universities) - Community college hands-on training # **Lab-Embedded Entrepreneurship Programs** 1 Recruit the best energy technology innovators - 2 Leverage expert mentorship and world-class facilities at the national labs on a win-win basis - 3 **Position** people and technology for market Spin the nation's top innovators "in" to the National Labs # **Technical Assistance** Public-private partnerships help manufacturers and industrial organizations set and achieve long-term energy intensity reduction goals through: - Technical assistance and in-plant training - Access to National Laboratory resources, software, and instrumentation - Networking opportunities - National recognition through awards, case studies, and success profiles 230+ 3,200+ partners plants energy & water goal achievers >\$6B cumulative energy cost savings # **Thank You** For additional information and to subscribe for updates: energy.gov/eere/amo/advanced-manufacturing-office