

Advanced Manufacturing Office

Valri Lightner, Deputy Director, Advanced Manufacturing Office G. Jeremy Leong, Technology Manager, Advanced Manufacturing Office manufacturing.energy.gov

Presentation for the Hydrogen and Fuel Cell Technologies Office Annual Merit Review May 2020

EERE's Advanced Manufacturing Office (AMO)

U.S. DEPARTMENT OF ENERGY

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Advanced Manufacturing Office

\$395M FY20

WHAT WE DO

Partner with industry, academia, states, and National Laboratories to catalyze R&D and the adoption of advanced manufacturing technologies and practices

R&D Projects
FY20 = \$151M

R&D Consortia FY20 = \$199M

Technical Assistance FY20 = \$45M

MANUFACTURING

AMO Guiding Principles

AMO works to increase energy and material efficiency in manufacturing to drive energy productivity and economic growth.

Uses roughly 25% of the nation's primary energy

Represents nearly 80% of energy use in energy-intensive sectors

Generates 11% of the U.S. GDP and 13 million jobs

Incurs \$200 billion in energy costs annually

A M O

GOALS

- Improve the productivity, competitiveness, energy efficiency, and security of U.S. manufacturing
- Reduce the life cycle energy and resource impacts of manufactured goods
- Leverage diverse domestic energy resources and materials in U.S. manufacturing, while strengthening environmental stewardship
- Transition DOE-supported innovative technologies and practices into U.S. manufacturing capabilities
- Strengthen and advance the U.S. manufacturing workforce

Framework to Shape AMO's Portfolio

AMO Strategic Process

Stakeholder Input

National Laboratory Listening Sessions

Forward-looking conversations to collaborate on new R&D opportunities and investigate future manufacturing needs and trends

- The National Laboratory complex is well-positioned to address national needs in manufacturing.
 EX: CRITICAL MATERIALS | ENERGY STORAGE | CIRCULAR ECONOMY
- Each National Laboratory brings unique domain expertise to solve key U.S. manufacturing challenges.
- National Laboratories offer specialized equipment, expert staff, infrastructure, and platforms for industry collaboration.
- Sessions underscored the need for advances in computation and materials science to transform U.S. manufacturing.

KEY STRATEGIC CAPABILITIES

High Performance Computing
Machine Learning
Manufacturing Demonstration
Chemical Separations
Testing and Validation
(for materials, devices)

Fundamental Systems Methods

AMO will harness the individual National Laboratories' capabilities and the strength of the complex to inspire discovery and secure U.S. leadership in the future of manufacturing.

Strategic Analysis: Technical White Papers

- Draw on collaborative office knowledge on a topic area
- Frame and refine ideas using a bottom-up / top-down approach
- Clarify opportunity areas and uncover linkages
- Lay out the current state of the field, the challenges and barriers that exist, the opportunity to address the challenge, and a potential strategy for a path forward for 2021 and beyond

Sample Topics

NATIONAL NEEDS

- Critical minerals
- Water security
- Energy storage

FUNDAMENTAL SYSTEMS METHODS

- Carbon capture
- Electrification
- Circular economy

FUNDAMENTAL AND APPLIED SCIENCE

- Chemical processes
- Additive manufacturing
- Power electronics

Funding Opportunities and Investment Portfolio

AMO's funding opportunities and selected projects:

- Address national needs
- Fund congressionally directed efforts
- Support the manufacturing enterprise of the future

FUNDING OPPORTUNITIES

FOAs | PRIZES | LAB CALLS

- AMO's strategic framework guides development of new funding topics through:
 - Strategic Analysis
 - Stakeholder Workshops
 - National Laboratory Listening Sessions

INVESTMENT PORTFOLIO

R&D PROJECTS | CONSORTIA | PRIZE WINNERS

- AMO actively manages a diverse portfolio, evaluating projects regularly for technical merit, energy impact, and progress against office goals through:
 - Peer Review
 - Introspective Portfolio Analysis
 - Verification & Validation; Field Validation

FY20 Funding Opportunities

AMO FY20 MULTI-TOPIC FOA: ≤ \$67M

- Next-generation manufacturing processes that improve energy efficiency in energy-intensive and energydependent industries, including steel manufacturing
- Modular, hybrid, or catalytic processes to improve energy efficiency in chemical manufacturing
- Connected, flexible, and efficient manufacturing facilities, products, and energy systems

BATTERY MANUFACTURING LAB CALL ≤ \$12M*

 Collaborate with industry on battery technology scale-up

*Joint with the Vehicle Technologies Office

BOTTLE FOA: ≤ \$25M*

- Highly recyclable or biodegradable plastics
- Novel methods for deconstructing and upcycling existing plastics
- BOTTLE Consortium collaborations

*Joint with the Bioenergy Technologies Office

WATER SECURITY

Water Resource Recovery Prize: ≤ \$1M

 Two-phased competition for novel, systems-based solutions for resource recovery at small-to-medium-sized water resource recovery facilities

COMING SOON –
Water securityspecific FOA: ≤ \$20M

CRITICAL MATERIALS FOA: ≤ \$30M

R&D for:

- Field validation and demonstration
- Next-generation extraction, separation, and processing technologies

TRANSPORTATION FOAs

- ≤ \$15M*: Polymer Composites for Vehicle Applications
 - *Joint with the Vehicle Technologies Office)
- ≤\$15M**: Electrolyzer Manufacturing R&D
 ≤\$15M**: Advanced Carbon Fiber for Compressed Gas
 Storage Tanks
 - **Joint with the Hydrogen and Fuel Cell Technologies Office

Flexible Combined Heat and Power Systems

TODAY'S ELECTRIC GRID

 Power system serves residential, commercial, and industrial loads, and interconnects with a growing number of intermittent renewable energy resources

NEW CONCEPT

- Flexible CHP system provides electricity and thermal energy for plant processes and operations
- Flexible CHP system provides additional generating capacity when grid demand increases and/or renewable resources are not available. Flexible CHP also can provide other services, such as frequency regulation, to keep the grid stable

Carbon Fibers and Composite Materials

The Carbon Fiber Technology Facility CFTF

- Only Open Access State-of-the-Art Facility in the U.S
- 42,000 ft² facility with production capacity of 25 tons/year of fiber from multiple precursors in various forms

The Carbon Fiber Technology Facility (CFTF) serves as a national resource to assist industry in overcoming the barriers of carbon fiber cost, technology scaling, and product and market development. CFTF is intended to be the bridge from R&D to deployment and commercialization of low-cost carbon fiber

- Demonstrate carbon fiber production using lower-cost precursors and reduced energy
- Enable development of domestic commercial sources for production of low-cost fiber or high-volume composites applications
- Formulate a Workforce Development program for carbon fiber and advance composites workforce

Key Thrusts

- Establish and perform collaborative R&D projects to reduce technical uncertainties of CF manufacturing process
- Investigate potential alternative carbon fiber precursors
- Investigate CF intermediate forms and technical challenges in composite applications
- Establish artificial intelligence-based framework and correlate process data to product characteristics
- Investigate and develop process measurement, sensing, and control methods

Carbon Fiber Technology Facility – N95 Filter Production

ADVANCED EQUIPMENT AND EXPERTISE

- AMO's investment in the CFTF created conditions for the team to react nimbly to develop new, scalable methods to meet demand for N95 filter material.
- Experts de-risked a specific and reproducible set of parameters, making them adoptable by the manufacturing industry.

AGILE RESPONSE TO N95 DEMAND

- Work with N95 inventor Dr. Peter Tsai to tackle real-time challenges with conversion
- Partner with engine, filtration, and power generation manufacturer Cummins to convert their commercial melt blowing lines to potentially produce millions of pounds of N95 material
- Open source the process parameters for industry, enabling textile and filter manufacturers with melt blown machines to start making N95 filters

Advanced Roll-to-Roll (R2R) Manufacturing

R2R Objectives

- Develop technologies to reduce the cost per manufactured throughput of continuous R2R manufacturing processes.
- Develop in-line instrumentation tools that will evaluate the quality of single and multi-layer materials in-process

R2R Manufacturing Collaborations

Ink Dispersion Characterization

- Understanding how ink composition and interactions to determine ink structure as well as device performance
- Optimize ink stability and processing (e.g. coatability and interactions with substrate)

Multilayer Coating

- Develop in-line multilayer coating on thin films (<10 µm) with high yield (>95%)
- Increased throughput, decreased energy intensity, decreased footprint, decreased CapEx

Modeling and Simulation

Continuum scale models for process design

and scale-up

- Deposition models
- Drying models
- User-interface and training

Accomplishment

Eliminated Need for PEMFC Cathode Overlayer

- PEMFC single-layer and multi-layer electrode performance based on ink characterization studies
- Property Models
- Characterization
- Fabrication

Manufacturing's Role in Energy Storage Grand Challenge

GOAI

U.S. global leadership in energy storage utilization and exports with a secure domestic manufacturing supply chain independent of foreign sources of critical materials

D O E

Accelerate scale-up of emerging manufacturing processes

Improve critical materials supply chain resilience

Address **technical barriers** in production and manufacturing

Technologies and Supply Chains

Meeting the Energy Storage Grand Challenge goal will require a combination of research and technology development across the manufacturing supply chain.

Raw materials

Refined materials

Component manufacturing

Energy storage system manufacturing

End user

Recycling/ Reuse/ Disposal

R&D ARE

Manufacturing process intensification

Critical materials use & sourcing

Roll-to-roll manufacturing capabilities

Membrane manufacturing processes

New materials & manufacturing processes for harsh service environments

Water desalination & purification

Combined Heat & Power systems

POTENTIAL

Flow batteries

Thermal energy storage

Lithium-based batteries

Non-lithium-based solid state batteries

Hydrogen generation & storage

Compressed air energy storage

Pumped hydro

Synthetic fuels (e.g. synbiogas)

And others

DOE Education & Workforce Initiatives

HIGH SCHOOL

 National Science Bowl[®] competitions

- Community College Internships Program
- Science

 Undergraduate
 Laboratory
 Internships
 Program

GRADUATE

- Graduate Student Research Program
- Interdisciplinary and industriallyrelevant traineeships

Energy Storage Internship Program

FACULTY

- Visiting Faculty
 Program for
 under represented
 institutions
- Curriculum
 development for
 degree
 programs

WORKFORCE

- Lab-Embedded Entrepreneurship Program
- Industrial
 Assessment
 Centers
 undergraduate
 training
 (31 universities)
- Community college hands-on training

Lab-Embedded Entrepreneurship Programs

1 Recruit the best energy technology innovators

- 2 Leverage expert mentorship and world-class facilities at the national labs on a win-win basis
- 3 **Position** people and technology for market

Spin the nation's top innovators "in" to the National Labs

Technical Assistance

Public-private partnerships help manufacturers and industrial organizations set and achieve long-term energy intensity reduction goals through:

- Technical assistance and in-plant training
- Access to National Laboratory resources, software, and instrumentation
- Networking opportunities
- National recognition through awards, case studies, and success profiles

230+ 3,200+ partners plants

energy & water goal achievers

>\$6B cumulative energy cost savings

Thank You

For additional information and to subscribe for updates:

energy.gov/eere/amo/advanced-manufacturing-office

