

FC135: FC-PAD: Fuel Cell Performance and Durability Consortium

May 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

2020 DOE Fuel Cell Technologies Office Annual Merit Review

FC-PAD Presentation Outline

- FC-PAD Structure & Landscape
- FC-PAD Organization & Partners
- Relevance, Overview & Objectives
- Approach: Priorities, Milestones, Capabilities

Durability:

- ♦ Effect of Loading
- ♦ Alloy Degradation
- ♦ Catalyst Support
- ♥ Effect of Upper Potential
- Catalyst Inks to Performance and Catalyst Layer (CL) Analysis:
 - ✤ Ink Composition-Solvent Studies
 - Scell Testing
 - ✤ Impact of Fabrication
 - b Membrane and Ionomer Characterization
 - ♦ Cell and CL modeling
- Collaborations
- Future Work
- Summary

FC-PAD Landscape

- FC-PAD conducts research at pre-competitive development levels
- Primarily TRL 2, 3, 4
- FC-PAD directly interacts with OEMs, components suppliers and academia

FC-PAD: Exploration of Critical Phenomena

characterization of phenomena fundamental understanding

FUEL CELL PERFORMANC

performance-durability interplay:

Approach

FC-PAD Organization

New Partners; Heavy Duty Fuel Cell Applications

Reviewer comments: open the consortium to other partners to take into account system consideration....

Comment – with move to heavy duty, need to understand operating conditions, cost targets, longer-term degradation mechanisms

Heavy Duty FOA Awards & New Collaborators

New Heavy Duty Project/Partners

UEL CELL PERFORMA

Durable Fuel Cell MEA Durable High Power Density **Durable MEAs for Heavy-Duty** through Immobilization of Fuel Cell Cathodes for Heavy-**Fuel Cell Electric Trucks** Catalyst Particle and **Duty Vehicles** Membrane Chemical **Carnegie Mellon University** Stabilizer TARTANS GEORGIA TECH hemours Northeastern University **Carnegie Mellon University** TARTANS MINES **BALLARD**° ARITO

FC-PAD Consortium - Overview & Relevance

Timeline

- Project start date: 10/01/2015
- Project end date: 09/30/2020
- Re-competed for FY21

Budget

- FY20 project funding: ~ \$3,500,000
- As proposed: 5-year consortium with yearly milestones & Go/No-Go

Partners/Collaborations

- DOE DE-FOA-0001412:
 - (GM, 3M, UTRC, Vanderbilt)
- DOE DE-FOA-0002044:
 - (GM, Nikola, Carnegie Mellon)
- No-cost collaborations listed

Barriers

Heavy-Duty Transportation (2030)

- Durability: 25,000 hour lifetime
- 68% peak efficiency
- \$80/kW fuel cell system cost

Light-Duty Transportation (2025)

- Durability with cycling: 8,000 hours plus 5,000 SU/SD Cycles
- Performance @ 0.8 V: 300 mA/cm² at < 0.1 mg PGM/cm²
- Performance: 1,800 mW/cm²
- Cost: \$35/kW system; \$17.5/kW_{net}MEA

Approach: Highest Ranked Topics by FC-PAD/FCTT

Approach

Steering Committee

Catalyst-layer Structure

- Correlate electrode microstructure and performance using characterization results and modeling to determine, for example, electrode transport properties
- ✤ Develop/measure key CCL parameters using multiple methodologies with consistent results
- \clubsuit Show where the ionomer is for different systems
- Iffect of ink composition, processing, and fabrication method on electrode microstructure

Performance/Durability (Characterization, Experimental, Modeling)

Understand/improve durability of alloy catalysts: effect of leaching on ionomer properties Understand/improve high current performance: R_{O2}, R_{H2}, different ionomers/carbons

New Capability and Modeling Development

- Develop novel methods, cells, and analysis techniques for in situ, ex situ and operando characterization of electrode layers and components
- Develop new high-resolution ionomer imaging and spectroscopy methods and develop and apply algorithms for structural reconstructions
- Develop novel methods, cells, and analysis techniques for in situ, ex situ and operando characterization of electrode and membrane layers and components
- bevelop new diagnostic methods to understand transport processes
- Integrated predictive models of coupled performance and durability

FC-PAD Consortium – Relevance & Objectives

- Advance performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) and their components at a pre-competitive level
 - FY20 shifted emphasis to heavy-duty applications
- Develop knowledge base for more durable and high-performance PEMFC materials & components
 - Understand science of component integration, e.g. ionomer interactions with carbon, interfaces between electrodes/GDL and/or electrodes/membranes
- Improve high-current density performance via:
 - Improved electrode structures
 - Reduced mass transport losses
- Improve component durability (e.g. membrane stabilization, self -healing, electrode-layer stabilization)
- Provide support to DOE-funded FC-PAD projects from FOA-1412
 - Projects ending FY20
- Provide support to DOE-funded FC-PAD projects from FOA-2044
 - Projects initiated FY20

Target Comparison between Light-Duty and Heavy-Duty

Table 1.	Technical Targets for Automotive-Scale (80 kWe net
	Fuel Cell System Operating on Hydrogen ^a

Characteristic	Units	Status	2020 Target	2025 Target	
Peak Energy Efficiency ^b	%	60 °	65	65	
Specific power	W/kg	659 ^d	650	900	
Cost ^f	\$/kWe	45 °	40	35	
Cold start-up time to 50% of rated power					
@ -20°C ambient temp	sec	20 f	30	30	
@ +20°C ambient temp	sec	<10 f	5	5	
Durability in automotive load cycle	hours	4130 ^g	5,000	8,000	
Unassisted start from ^h	°C	-30 ⁱ	-30	-30	

Table 1. Technical System Targets: Class 8 Long-Haul Tractor-Trailers (updated 10/31/19)

Characteristic	Unite	Targets for Class 8 Tractor-Trailers	
Characteristic	Units	Interim (2030)	Ultimate ⁹
Fuel Cell System Lifetime ^{1,2}	hours	25,000	30,000
Fuel Cell System Cost ^{1,3,4}	\$/kW	80	60
Fuel Cell Efficiency (peak)	%	68	72
Hydrogen Fill Rate	kg H2/min	8	10
Storage System Cycle Life ⁵	cycles	5,000	5,000
Pressurized Storage System Cycle Life ⁶	cycles	11,000	11,000
Hydrogen Storage System Cost ^{4,7,8}	\$/kWh	9	8
nyurogen storage system cost ??	(\$/kg H ₂ stored)	(300)	(266)

FY2020Q1 - Q2 Joint Milestones

Q1 Milestone Name/Description	Due Date	Comments
Enhance the visibility of FC-PAD by presentations and publications. Distribute, present and publicize FC-PAD results. (ANL, LANL, LBNL, NREL, ORNL)	12/31/2019	 ✓ Completed ✓ Current Opinion article published
Expected results: 33 presentations at ECS, submission opinion article to 'Current Opinion in Electrochemistry'.		

Q2 Milestone Name/Description	Due Date	Comments
Enhance the visibility of FC-PAD by presentations and publications. Distribute, present and publicize FC-PAD results. (ANL, LANL, LBNL, NREL, ORNL)	3/31/2020	 ✓ Submission of FC-PAD perspectives article to 'Nature Energy'. ✓ Revision re-submitted
Quantify importance of operational variables for MEA durability for heavy duty applications. Define expected number of duty cycles for 1,000,000 miles of operation, SD/SU and design ASTs to reflect . (LANL, ANL) Examine operational variables including: For Catalyst AST: CL Loading, UPL, Temperature, RH for catalyst ASTs For Membrane AST: Time at OCV, RH and RH swing, Temperature	3/31/2020	 ✓ Completed ✓ Data included in AMR
Comparison MEA fabrication techniques to validate applicability of lab-scale MEA production. Spray versus gravure (NREL, ORNL, LANL, ANL) Compare performance and characteristics of lab-produced MEAs (spray) to MEAs produced by mass-manufacturable techniques (roll-coating, Gravure, draw-down-bar), in term of performance, impedance, porosity, CL distribution and elemental/ionomer mapping	3/31/2020	 ✓ Completed ✓ Data included in AMR

FY2020Q3 - Q4 Joint Milestone

Q3 Milestone Name/Description	Due Date	Comments
Comparison MEA fabrication techniques to validate applicability of lab-scale MEA production: spray versus roll-to-roll/gravure/draw-down bar. (ANL, LANL, LBNL, NREL, ORNL)	6/30/2020	 ✓ Partially Completed ✓ Varying MEA fabrication techniques compared ✓ Characterization under-
Compare catalyst layer structure (XCT, ionomer mapping, impedance, catalyst layer porosity) for PtCo/HSAC (or other current advanced alloy catalysts). Also validate and compare in situ performance characteristic including VIR, resistances, impedance and durability.		way ✓ Data included in AMR

Q4 Milestone Name/Description	Due Date	Comments
Propose ASTs for heavy-duty fuel cell applications on catalysts and membranes, with	9/31/2020	✓ In Progress
substantiating modeling and experimental data. (ANL, LANL, LBNL, NREL, ORNL)		✓ Loading of 0.1, 0.2, 0.3
Define expected time at maximum operating temperature (via system analysis and FC-PAD Heavy Duty partners).		 Data included in AMR
Define membrane AST to reflect expected maximum operating temperatures for Class 8 vehicles. Evaluate heavy-duty vehicle expected idle time and normal load and their effect on membrane durability.		
Define catalyst AST (at loadings of 0.1, 0.2, 0.4 mgPt/cm ²) to reflect expected number of duty cycles for 1,000,000 miles of operation.		
Conduct all proposed ASTs on current SOA materials with post-characterization.		

FY2020 EOY GO/NO-GO

Description	Criteria
Heavy-Duty drive-cycle and AST recommendations	 Develop Heavy-Duty Vehicle MEAs demonstrating improved durability. Demonstrate 4x-cycle life improvement at high current density in heavy-duty MEAs compared to LDV state-of-art MEAs (LDV SOA MEAs defined as total Pt loading of 0.125 mgPt/cm², cycle life defined as 30 mV voltage degradation).
	 Propose new MEA drive cycle, and catalyst/membrane ASTs to reflect heavy- duty operation, including operation simulating time and temperature for high loads (95 – 105 C), and time and temperature simulating extensive idle (~ < 60 C).
	 Catalyst ASTs will detail upper potential, lower potential, cycle time (including rise/fall slope), operating temperature, and relative humidity.
	 Membrane ASTs will define operating temperature and stressors related to OCV and radical generation plus mechanical swelling/de-swelling.
	 These protocols will be develop in collaboration with new project partners related to heavy-duty FOA projects.

FUEL CELL PERFORMANCE

Approach

Materials-based Solutions to Decrease Degradation

Re-Focus on Heavy-Duty MEAs, Durability and Performance

Higher Loading Durability - Effect of loading

Durability Performance: High Loading - Effect of Loading

loadings and thicker electrodes lose any benefit at high current densities

80C, 100% RH, 150 kPa

Real Z (Ohm)

-0.05

0.1

0.6

Durability Characterization: Effect of loading (0.05 to 0.15 mg_{Pt}/cm²)

Mean diameter after AST (SAXS)

0.05 mg/cm²: 4.5 nm 0.10 mg/cm²: 5.2 nm 0.15 mg/cm²: 5.5 nm

Pt:Co at% in electrode (EDS)

- BOL : Pt:Co = 75:25 30K (0.05) : Pt:Co = 80:20 30K (0.10) : Pt:Co = 85:15 30K (0.15) : Pt:Co = 87:13
- Higher loading results in slightly larger growth in Pt particle size (both SAXS and TEM)
- On average Co is retained better in the lower loaded electrode
- Larger lattice contraction loss for lower loading (EXAFS data, not shown) coupled with smaller particle growth indicate larger particles retain Co better than smaller particles

BOL (EKAT 0574)

PtCo particle size = 4.2 nm

> 0.10mg_{Pt}/cm² 30,000 cycles

PtCo particle size = 5.5 nm

0.05mg_{Pt}/cm² 30,000 cycles

PtCo particle size = 5.1 nm

0.15mg_{Pt}/cm² 30,000 cycles

PtCo particle size = 5.6 nm

Effect of Alloys

Durability Performance: High Loading - Effect of Alloying

- Kinetic performance of PtCo is better than that of Pt at BOL: higher alloy mass activity
- No kinetic advantage at EOL of using alloy catalyst: significant loss in kinetic performance of alloy catalyst
- Transport resistance of PtCo alloys higher than Pt

ElystPt500550 (Pt) and ElystPt500670 (PtCo)

80C, 100% RH, 150 kPa Loading = 0.25mg/cm²

SW AST = Square Wave Catalyst AST (0.6 - 0.95V)

Durability Characterization: High Loading - Effect of Alloying

Particle Diameter (nm)

- PtCo has a larger initial particle diameter and grows less
- Pt has a smaller initial particle diameter and grows more (Pt has larger particle size than PtCo after 75,000 cycles)
- Particle size increase does not have an effect on high current performance at high loadings

Particle Diameter (nm)

	Mean diameter (nm)		
Sample	BOL	EOT	∆d (nm)
Pt/HSC			
0.25mgPt/cm ²	4.3	7.5	3.2
PtCo/HSC			
0.27mgPt/cm ²	5.2	6.8	1.6

TEM shows 6.8 nm Pt and 6.4 nm PtCo particles after 75,000 cycles

Durability Characterization: High Loading - Effect of Alloying

- Larger PtCo particles exhibit a "spongy" or "core-shell" morphology
- Large PtCo particles (Core shell)
- CCL porosity is similar
- Ionomer more aggregated in PtCo than Pt (I/C 0.95 in PtCo and 0.83 in Pt)
- Both Pt and Co measured ITM (In The Membrane)

CCL thickness = $7\mu m$ Pt-depleted zone = $1\mu m$ PITM ~ $4\mu m$ from CCL

Durability Performance : High Loading: Effect of Alloying

- TEC10E50E and TEC36E32E confirm results observed with Umicore catalysts
- PtCo alloy catalysts lose kinetic advantage after durability cycles
- Mass transport in Pt catalysts better during all stages of the AST

Umicore - PtCo Catalyst in CCL After Catalyst Cycling AST

2020 DOE Fuel Cell Technologies Office Annual Merit Review

FUEL CELL PERFORMANC

Co Dissolution/Migration (Loss) During Electrocatalyst AST

Performance (ECSA) loss can be directly attributed to extensive Co loss from catalyst/CCL into membrane during AST SOA PtCo exhibits improved initial performance (ECSA) compared to other PtCo/HSAC catalysts, but after 30,000 cycles, ECSA values are the same

Effect of support on catalyst durability

Durability Performance

Effect of Carbon Support (porous/solid)

SW AST = Square Wave Catalyst AST (0.6 – 0.95V)

Durability Characterization

FUEL CELL PERFORMANCE

Effect of Carbon Support (porous/solid)

Porous carbon slows Pt growth while Vulcan support retains more Co

SW AST = Square Wave Catalyst AST (0.6 - 0.95V)

Durability Performance

Graphitized Carbons(porous/solid)

- Performance of graphitized carbons significantly lower due to larger particle size and lower ECSA
- Performance of TEC36VA32 (I/C = 0.4) better than transport of TEC36EA32 (I/C = 0.5)
- Kinetic and Mass transport resistances show little change

Durability Characterization Graphitized carbon(porous/solid)

Little change in catalyst particle size or Co content (TEM). USAXS shows particle size growth

Durability Performance Acetylene Black

- Unoptimized MEA performance was lower and durability poor
- MEA optimization significantly enhanced performance
- Repeat of durability underway

80C, 100% RH, 150 kPa

Durability Characterization Acetylene Black

- Smallest Pt particle sizes at both BOL and EOL of any catalyst tested
- At BOL the Co content of the particles increases with increasing particle size consistent with other catalysts
- At EOL most of the larger particles have lower Co content. Probably due to dissolution and reprecipitation of Pt

Durability : Effect of Catalyst Pt/C ratio

Particle Diameter (nm)

- Pt(50%)/C has lower BOL performance than Pt(30%)/C due to larger starting particle size of 5.2nm vs 4.2nm and increased RO₂.
- The Pt(50%) shows a slightly larger growth during durability (28% vs 24%) despite its larger initial particle size
- The Pt(50%)/C catalysts shows better Co retention. Pt in the membrane was observed and a 1-1.5um depletion layer was also observed close to the catalyst layer

ELYSTPt500670 and ELYSTPt300670

SW AST = Square Wave Catalyst AST (0.6 - 0.95V)

Effect of Upper potential

Cell Degradation in Catalyst AST: Effect of Upper Potential Limit

Degradation can be controlled by clipping cell voltage

- After 50k AST cycles: △V(0.90V UPL) < △V(0.925V UPL) << △V(0.95V UPL)</p>
- After 50k cycles at 0.90V UPL, no loss in cell voltage for current densities up to 1.25 A/cm²

Durability : Catalyst Characterization (upper potential effect)

30,000 cycles 0.6-0.925V (LANL190422)

30,000 cycles 0.6-0.95V (LANL180828)

The amount of PITM and depth of Pt migration into membrane are both *greater* for lower voltage (**0.925V**) MEA

The amount of Co dissolution into membrane is *greater* for higher voltage (**0.95V**) MEA

Durability : Catalyst Characterization (upper potential effect)

- Scattering by catalyst nanoparticles at q > 0.01 (A⁻¹):
 - Cycling the electrodes to UPL of 0.925 V or 0.95 V results in PSD shifted to slightly larger particle sizes for UPL of 0.95 V
 - Mean particle diameter slightly larger for the electrode cycled to high UPL

Mean diameters

 $BOL = 4.2 \text{ nm} \pm 0.6 \text{ nm}$ $0.925 V_{\text{UPI}} = 5.0 \text{ nm} \pm 0.8 \text{ nm}$ $0.950 V_{IIPI} = 5.2 \text{ nm} \pm 0.8 \text{ nm}$

Durability : Catalyst Characterization (upper potential effect)

• Larger particles retain more Co

- More Co retained in 0.925V cycled sample (especially in Pt depleted zone)
- Thickness change also correlates with voltage (more carbon corrosion at higher voltages)

3 µm

Electrode Structure

Ink Composition-Solvent Studies

Electrode Layers and MEA Characterization:

Electrode Input Variables and Optimization

How does ionomer distribution affect performance?

Motivation

- Many poorly-understood interactions in inks that control catalyst layer morphology
- Need to better clarify impact of ionomer in ink and catalyst-layer formation process

Ionomer Thin Films: Casting Methods

Morphology of Ionomer during Casting

- In-situ casting device implement at the ALS beamline 7.3.3. for grazingincidence x-ray scattering (GIXS)
- Monitor films from dispersion to film state (on a substrate)
 Solution and solid in single run
- Origins of film formation
 Fundamental understanding
- Linkage to casting-ink studies and catalyst-ionomer film formation
- Evolution of the features: kinetics
 Aggregates, gel behavior
 - ♥ Crystallinity, Phase-separation
 - Domain size and connectivity, anisotropy

Schematics of in-situ GIXS technique for monitoring ionomer film morphology during casting

P. J. Dudenas and A. Kusoglu, *Macromolecules*, 52 (2019) 7779-7785

Structural Evolution (Stage I-IV)

Understanding of the stages of film formation

- Solution
- Sol-Gel transition and crystallization Ш.
- III. Film formation and phase-separation

IV. Film drying and network formations

d, = 3.8 ±0.05 nm phase-separation complete d-spacing is decreasing (drving) crystallite ripening continues

Factors controlling ionomer film properties and functionality

SA new avenue to control and alter film functionality Seffect of Solvent Composition on Film Structure

P. J. Dudenas and A. Kusoglu, Macromolecules, 52 (2019) 7779-7785

Stage IV film drying;

Effect of Solvent on Ionomer Structure

- Rod–like ionomer aggregates of 3-7 nm diameter in solvent mixtures
 - ✓ Large variation in diameter with EW
 - ✓ Slight variation with nPA:water
- Ordering of rod-like aggregates increases with increasing water content of ink
- 825 EW aggregates are more aligned/ordered than 1000 EW aggregates

Ordering of rod-like ionomer aggregates

Probing Fundamental Interactions in Inks

Quartz Crystal Microbalance (QCM) – adsorption dynamics on model surfaces

Carbon Support Effect on Catalyst-Ionomer Ink Rheology

NREL AMO AMR 2017

- Treated carbon with similar platinum treatment process
- Similar viscosity shift (though smaller)
 - ♥ Currently testing with QCM

Catalyst-Ionomer Ink Rheology

Khandavalli et al. ACS Appl. Mater. Interfaces. 10 (2018) 43610-43622

Pt-HSC tend to have more shear thinning behavior – more structure in solution

Cell Testing

Ink Solvent Effects on Pt/Vu CCMs

How does ink formulation ($H_2O:nPA$ ratio) affect ionomer distribution in and its interactions with catalyst particles?

T. Van Cleve et al. ACS Appl. Mater. Interfaces 2019, 11, 50, 46953-46964

Understanding Solvent Effects on Pt/Vu Electrode Structure and Performance

Electrode Microstructure

General Trends with Increasing wt% H₂O

- Ionomer coverage on Pt increases (EC)
- Ionomer aggregation decreases (DLS)
- Complex O₂ transport balances microscale (ionomer break-up) and nanoscale (Pt / ionomer interface and orientation) phenomena

Fabrication Method and Electrode Structure (Electrospinning)

F 2.0kV X5,000 WD 10.2mm SEI 1µm 0.9 – PtVu CCM - 75% RH 0.8 - PtVu NF- 15 wt% PAA - 75% RH 0.7 E_{HFR-Free}[V] 0.6 0.5 Higher H₂/Air performance of NFs 0.4 at 75% RH: 0.3 -0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 I [A/cm²]

Complementary in-situ and ex-situ approaches are needed to understand materials and process improvements: Extend our current understanding and utilization of various ex situ <u>microscopic characterization</u> and in situ <u>electrochemical diagnostic techniques</u> towards studying and optimizing new electrode designs

Fabrication Method and Electrode Structure (Electrospinning)

• Fabrication method can aid in altering interactions and properties

Combined approach needed for understanding lonomer coverage and proton accessibility of the Platinum active sites in nanofibers and other electrode structures.

Sample Matrix – I/C and Solvent Effect

Catalyst	lonomer Type	I/C	Ink Solvent nPA:Water	Form/ Characterization
30 wt% Pt/HSC	3M 825 EW	0.7	5:5	Ink/USAXS
30 wt% Pt/HSC	PFSA 1000	0.7 0.9 1.2	7:3 , 3:7 5:5 7:3, 5:5, 3:7	Ink/USAXS
46.7 wt% Pt/Vulcan TEC10V50E	PFSA 1000	0.6	8:2, 3:4, 2:8	Electrodes before and after pol curves/USAXS
30 wt% PtCo/HSC	3M 825 EW	0.7	7:3, 5:5, 3:7	Ink/USAXS and XAFS
30 wt% PtCo/HSC	PFSA 1000	0.7 0.9 1.2	7:3 7:3, 5:5, 3:7 7:3, 5:5, 3:7	Ink/USAXS Electrodes/USAXS, XAFS, nano-CT
16.4 wt% PtNi/HSC (ANL)	PFSA 1000	0.9	7:3. 5:5, 3:7, 4:6, 2:8	Ink/USAXS
14.4 wt% PtNi/Vulcan (ANL)	PFSA 1000	0.9	7:3. 5:5, 3:7, 4:6, 2:8	Ink/USAXS

PtNi/HSC and PtNi/Vulcan provided by V. Stamenkovic, FC140

Effect of Ionomer Type on PtCo Structure

3M 825 EW

Pt-Pt bond length in Pt catalyst: 2.758Å

Pt-Co

Co-Co

Pt-Pt

FUEL CELL PERFORMANCE

- Number of Pt-Pt bonds and Pt-Pt bond length increases from powders to inks indicative of loss of Co from particles
 - 3M 825 EW Ionomer: Co Ieaching increases with increasing water content in inks
- 3M 825 EW ionomer causes more Co leaching than PFSA 1000 EW ionomer and more loss of Pt-Pt contraction

PFSA 1000 EW

Pt CN Co CN

Solvent Ratio Impact on PtCo/HSC Performance

Similar dependence on ink content for PtCo/HSC and Pt/Vu

Place holder

Effect of Ink Solvent on PtNi

Highest extent of Ni leaching into ink observed for 3 nPA:7 Water

Effect of Solvent on Agglomerate Break-up: ANL-PtNi, HSC vs Vulcan

Ink Solvent Effects on PtCo/HSC CCMs

50%

wt% H

_ PtCo/HSC

30%

0.25

0.2

0.15

0.1

0.05

Catalyst/Ionomer Interface

Less catalyst/ionomerinteractions on HSC supports Weaker influence solvents on these interfaces

80%

Electrode Microstructure

Smaller agglomerates present for water-rich electrodes

- Same performance trends observed on Pt/Vu and PtCo/HSC
- Best O₂ transport for 60 and 70wt% water CCMs

Electrode Fabrication Details

30wt% PtCoHSC (Umicore) catalyst 5 different H₂O:nPA ink ratios D2020 Ionomer (I:C 0.9)

Ultrasonic sprayed CCMs on Naf 211

Conditioned with 5 VR cycles

Significance difference in electrode microstructures on HSC supports

50cm² MEA Performance with Optimized Cell Configuration

Possible to exceed DOE targets with industrially available catalysts by only modifying ink formulation

Mass Activity at 0.9V _{iR-free} (anodic/cationic scan)	A/mg _{PGM}	0.44	1.186 1.008*	1.164 0.989*	1.020 0.867*	
Current Density at 0.8V	A/cm ²	0.3	0.27	0.32	0.27	
Power at 0.67 V, 250 kPa _{abs}	W/cm ²	1	0.93	1.02	0.90	
PGM Loading	mg/cm ²	0.125	0.11	0.11	0.11	

Impact of Fabrication

Electrodes: Sprayed versus Rod-coated (TEC10E20E)

Rod-coating comparable performance to sprayed CCM

- IPA/water ratio matters:
 - At same IPA/water ratio, diluted ink shows similar performance
- NPA and IPA are equivalent in terms of performance

Rod method/Ink by: Applied Catalysis B: Environmental Volume 56, Issues 1–2, 2005, 9-35

	Pt loading (mg/cm²)	ECSA (m²/g) HUPD	MA (A/mg)	HFR (Ω)
DL111418	0.0955	78.30	0.557	0.012
XW051719-1_1st	0.1080	81.25	0.614	0.012

Ink Solvent Effects on PtCo/HSC R2R GDEs

Roll-to-Roll GDE Fabrication30wt% PtCo/HSC (Umicore)3 different H2O:nPA ink ratiosD2020 Ionomer (I:C 0.9)Slot-die coated on H23C8 GDLHot-pressed on Nafion 211Same anodes as ultrasonic sprayCCMs (50wt% Pt/HSC with0.1mgPt/cm2 loading, I:C 0.9)

- Both R2R GDEs and US CCMs show better H₂/Air performance for waterrich inks compared to nPA-rich inks
- Performance improvements correspond with lower local O₂ transport resistances (R^{Pt}_{O2}) for water-rich formulations

Effect of Conditioning on R2R PtCo/HSC Performance

i [A cm

- 55wt% H₂O R2R GDEs exhibits similar performance and conditioning trends compared with prior work on 60wt% H₂O sprayed CCMs^{1,2}
- Peak activity achieved after 5 VR cycles without affecting R_{O_2}
- For these formulations, electrode fabrication has little effect on mass activity, O₂ transport, and H₂/Air Performance

Membrane and Ionomer Characterization

High-Temperature Conductivity of PFSAs

Proton conductivity and d-spacing increase with temperature

Similar activation energies: Minor dependence on side-chain

FUEL CELL PERFORMANCE

Multi-acid side-chain PFIA: Structure-Transport

Structural origins if transport in PFIA

- > perfluorosulfonic imide side chain
- > Increasing IEC for the same backbone
- > backbone of the polymer froms into an unusually highly ordered more crystalline configuration, giving rise to both inter- and intraside chain interactions

Higher conductivity at low RH

- Even at the same water content
- Better high-Temp conductivity

Presence of a different mechanism

- > Help formation of H-bonded network
- > higher proton conductivity at lower RH conditions owing to dynamic changes in its local molecular environment and more flexible side chains with better-dispersed, smaller water clusters forming the hydrophilic domains

low

humidi

PFSA

Water Per Acid Group

higher proton

conductivity at lower humidity ⇒

sulfonic acid

15

PFICE vs. PFSA lonomers – Dry vs. Hydrated

ĊF₂

SO₂H

lenaths

More

Less

- PFSA Nano-domain swelling with water
- PFICE has more acid groups on side- $_{CF_2}^{v}$ chain, and preserves order (peak ĊF₂ FWHM) ĊF₂
 - ♦ With Larger d-spacing in dry /wet
 - Narrower peak in both states \rightarrow better phase-separation \rightarrow <u>structural order</u>

Similar distribution of correlation lenaths due to material's high ion content & order

Analyzing Ionomer Properties Using Microelectrodes

- Oxygen diffusivity and solubility in Nafion 211 calculated from mass transport-limited current
 - Strain Strain
 - > The diffusion equation was solved numerically for the Pt electrode-membrane geometry
 - Least-squared error fitting was used to optimize the fit and produce a curve accurate over longer time domains

Calculated numerical best-fit curve of current vs time. This was used to determine the D and S of the membrane.

Species	Diffusivity (m ² /s)	Solubility (mol/(m ^{3*} bar))	Permeability (mol/(m*s*bar))
Oxygen	6.02 x 10 ⁻¹²	270	1.63 x 10 ⁻⁹

Microscale Model of Membrane Transport Properties

Stefan-Maxwell-Onsager Theory

$$c_i \nabla \mu_i = \sum_{j \neq M} K_{ij} (\boldsymbol{v}_j - \boldsymbol{v}_i)$$

- c_i : concentration
- μ_i : electrochemical potential
- K_{ij} : friction coefficient
- v_i : velocity
- Complete description of membrane transport properties

 $\mathfrak{G}_{00}, t_{\mathrm{H}^+}, \xi, \kappa = f(K_{ij})$

 Rigorous description of interspecies interactions and transport couplings Types of friction coefficients:

- 1) Solvent/ion
- Predicted by Stokes flow

2) Ion/ion

From Debye-Hückel-Onsager Theory

- 3) Solvent/ and ion/membrane
- Hydrodynamic flow through pores

Microscale Model of Membrane Transport Properties

A. Crothers et al., JECS, 167, 013548 (2020). doi: 10.1149/1945-7111/ab6724

Cell and CL Modeling

Cerium-Ion Transport Model

Cerium-Ion Transport Model

Operating Conditions

- S As RH ↓, cerium in cathode ↑
- Higher λ draws cerium towards anode and membrane: Better mitigation of peroxide at anode, improves conductivity

S current ↑, cerium in cathode ↑

Transient Effects

- Solution Sol
- ➤ Further ↓ in FRR as cerium ↑
- > Acceleration of degradation rate with time

Voltage Loss Breakdown

Simulation conditions:

- \land As cerium \uparrow , activity of protons \downarrow
- Cerium changes transport properties, contributing additional losses

Cerium concentration = 10% of SO3⁻ sites

T = 80°C, p = 1 bar, RHa = RHc = 90%

Feed/air flow = 60/100 sccm

 \succ OCV \downarrow with cerium content \uparrow

outing \geq 0.6 \overline{I}

Modeling Iron Movement

1) iron corrosion BPP \rightarrow H₂O_{aq,channel} 2) channel \rightarrow DM transport across interface

3) transport within DM

4) transport in CL once ions reach ionomer

Modeling Iron Movement

Assume liquid-water pathway from channel to PEM with iron water droplets
 Increasing cell current density increases liquid water velocity, decreases iron flux to MEA

ECSA Dependence on RH in HSC

- Modeled water update in high-surface carbon – in agreement with experiments
 - Model predicts proton conduction via adsorbed water films in addition to water-filled pores
 - N2-BET data (from literature) and SEM imaging studies utilized for carbon pore size distribution
 - Interaction between carbon surface and water molecules implemented using Lennard-Jones 6-12 potential
 - Good match of ECSA dependence on RH with experiments obtained when proton conduction through adsorbed water film of monolayer thickness and above considered
- Pt particles having in contact with adsorbed water films are also active

Transport Processes in Pt/C Pores

- Modeled proton and gas transport in flooded and wetted pores
- Mesoporous carbon (with wetted pores) performs better at mid-high RH
 - Governing equations for transport include Poisson Boltzmann, Poisson Nernst Planck and Fick's diffusion law
 - Butler-Volmer kinetics-based ORR reaction
 - Double-layer included using Guoy-Chapman-Stern theory without any adsorption in IHP
 - Current in wetted pores up to 3 times higher than flooded pores (Vapplied – Vpzc = -0.2V)

Available Surface Area for O₂ Transport

Available agglomerate surface area has significant impact on the limiting current resistance

UEL CELL PERFORMA

Coupled O₂ and Charge Transport

Ionic potential field inside the agglomerate is strongly dependent on the ionomer distribution and proton conductivity of ionomer and liquid water

F F F F F F F F F F F

Example of poor ionomer distribution and

penetration in an agglomerate

Objectives

- Identify optimum agglomerate structures
- Criterion: Highest current density for given potential

2020 DOE Fuel Cell Technologies Office Annual Merit Review

lonic potential assigned at the neighbor agglomerates as

boundary condition $\sigma_I = 10 \text{ S.m}^{-1}$, $\sigma_W = 0.1 \text{ S.m}^{-1}$

η, V

0.6

0.59

0.58

0.57

Collaborations (FOA-1412 Partners)

- Core FC-PAD team consists of five national labs
 - Argonne, Lawrence Berkeley, Los Alamos, Oak Ridge and NREL
 - Materials, data and students frequently travel between labs

Interactions with DOE-awarded FC-PAD Projects (FOA-1412) POC assigned for each project to coordinate activities with PI FC-PAD work related to those presented in those AMRs FC155: 3M - PI: Andrew Haug – FC-PAD POC: Adam Weber FC156: GM - PI: Swami Kumaraguru – FC-PAD POC: K.C. Neyerlin FC157: UTRC - PI: Mike Perry – FC-PAD POC: Rod Borup

FC158: Vanderbilt - PI: Peter Pintauro – FC-PAD POC: Rangachary Mukundan

- 30% of National Lab budget supports FOA projects
 - Equal support to each project
- Two in-person FC-PAD meetings held annually include FOA members with individual sessions held to discuss interactions and progress

FC-PAD support to: Novel ionomers and electrode structures for improved PEMFC electrode performance at low PGM loadings P.I.: Andrew Haug- Project ID: FC155

Component understanding

Ionomer morphology and properties

PFSA & IMIDE#2 more dense and oriented

Phenomena elucidation

<u>3M ionomers and dNSTF result in lower local resistance</u>

Examine processing conditions and CL structure

	Type 1 vs	Type 2	>400nm Agglomeration
C-type	HSC	XC72	7X
%M/C	XC72	10V50E	50X
I/C	0.8	0.4	3X
Ionomer	825	PFIA	~2X
Electrode	dNSTF,	10V50E	~ 7 5X
Electrode	XC72, I/C=0.4	Baseline	(500X for HSC)

dispersed NSTF results in higher agglomeration

Better water management and durability with dNSTF and apparently proton limited

FC-PAD support to: Fuel Cell Membrane-Electrode-Assemblies with Ultra-Low Pt Nanofiber Electrodes

PI: Peter Pintauro - Project ID: # FC158

10

1850

UEL CELL PERFORM

Better water management and better durability of nanofiber MEAs

15

FC-PAD support to: High performance PEFC electrode structures P.I.: Mike L. Perry - Project ID: FC157 United Technologies Research Center

2020 DOE Fuel Cell Technologies Office Annual Merit Review

Porosity

Relative Humiditv

FUEL CELL PERFORMANCE

Collaborations

Collaborations (Non-FOA activities)

Institutions	Role	
Umicore	Supply SOA catalysts, MEAs	
UC Irvine	GDL imaging	
University Carlos III of Madrid	Microscale simulations	
ткк	Supply SOA catalysts	
Johnson Matthey	Catalysts and CCMs	
CEA (and ID-FAST EU Consortium)	Membrane studies	
Ion Power	Supply CCMs	
Xi'an Jiaotong University	CL mesoscale modeling	
NIST – National Institute of Standards and Tech.	Neutron imaging	
NYU	Novel Ionomers	
University of Alberta	Flowfield and droplet modeling	
US Drive	Mirai analysis	
3M	Membrane chemistry	
LEMTA, CNRS/Université de Lorraine	Shut-down/Start-up testing	

Collaborations

Collaborations (Non-FOA activities)

Institutions	Role
CIEMAT U Waterloo	Electrosprayed CLs GDL Modeling
Penn State U	Ionomer thin films

Future Work: Heavy-Duty Applications

Heavy-Duty Deviations from Light-Duty (Durability & Efficiency)

- ♦ Much longer lifetimes (1,000,000 miles; 25,000-30,000 hrs)
- Socus on improved efficiency higher operating temperatures (better kinetics), higher emphasis on lower stack power density (higher voltage)
- > 68% 72% peak efficiency
- Cost targets are less stringent depending upon efficiency and durability payback
 - > Initial \$80/kW fuel cell system cost, ultimate \$60/kW fuel cell system cost
- ✤ Explore relationships between operating conditions, conductivity and membrane durability.
 - > Operating temperature in the range of 100–120 C and relative humidity in the range of 20– 30%.

FC-PAD Workscope

- ✤ Transition to heavy-duty fuel cell operating space and materials
 - > Heavy-Duty drive cycles different compared with light-duty
- > Long-haul and delivery also have substantially differing drive cycles
- ↔ Refine models, characterization, and diagnostics for heavy-duty operating conditions
- Develop refined ASTs for life-time prediction with heavy-duty materials and operating conditions

Planned activities on understanding of component properties, structures and transport phenomena is

Future Work:

MEAs & Component for High Efficiency and Durability

- Re-prioritize research directions related to heavy-duty operation
 Greater efficiency
 High durability
 - 🖏 High durability
- Understand the heavy-duty fuel cell operating space and prioritize research directions
 - Sexamples include:
 - > Idle time and fewer start/stops (long haul)
 - > Time at high voltage with high power and heat rejection requirements
 - > Efficiency hit due to gas crossover through membrane for extended idle
 - > Low-power operation with high-power extended spikes.
 - > Effect of membrane additives, membrane thickness
 - > Catalyst particle size and catalyst alloying under heavy duty operating modes.

Heavy-Duty Materials, Components and Cell Understanding

- b Material and characterization studies
- ♦ Catalyst layer studies
- ♥ Durability
- ♦ Water and thermal management

Summary

Relevance/Objective

Optimize performance and durability of fuel-cell components and assemblies
 Shifted emphasis to support Heavy-Duty Transportation Applications

Approach:

Use synergistic combination of modeling and experiments to explore and optimize component properties, behavior, and phenomena

Technical Accomplishments :

Surability measurements at projected heavy-duty loadings

- Effect of Loading
- Alloy Degradation
- Catalyst Support
- Effect of Upper Potential

Scatalyst Inks to Performance and Catalyst Layer (CL) Analysis:

- Ink Composition-Solvent Studies
- Cell Testing
- Impact of Fabrication
- Membrane and Ionomer Characterization
- Cell and CL modeling

Future Work

Secus on heavy duty applications

Emphasis on efficiency and durability

Continue to develop the knowledge base to improve catalyst layer structures and component integration for fuel cell performance, efficiency, and durability

What (Who) is FC-PAD? National Lab Contributors

Argor **Debbie Myers Rajesh Ahluwalia** Nancy Kariuki **Dennis** Papadias C. Firat Cetinbas J-K Peng Xiaohua Wang Jeremy Kropf Jaehyung Park Evan Wegener

Adam Weber Ahmet Kusoglu Lalit Pant Anamika Chowdhury Sarah Berlinger John Petrovick Andrew Crothers Peter J. Dudenas Victoria Ehlinger Ashley Bird Xiaoyan Luo Grace Lau **Clayton Radke** Gregory Su (ALS) Isvar Cordova (ALS)

os Alamos **Rod Borup** Rangachary Mukundan Siddharth Komini Babu Kavitha Chintam **Derek Richard David Langlois** Roger Lujan Mike Workman Sergio Herrera Dongguo Li Xiaojing Wang

KC Neyerlin Sadia Kabir Tim Van Cleve Guanxiong Wang Andrew Star Ellis Klein

David Cullen Michael Zachman Shawn Reeves Haoran Yu Karren More

DOE EERE: Energy Efficiency and Renewable Energy Fuel Cell Technologies Office (FCTO)

- Fuel Cells Program Manager & Technology Manager:
 Dimitrios Papageorgopoulos
 Greg Kleen
- Organizations we have collaborated with to date

User Facilities

DOE Office of Science: SLAC, LBNL-Advanced Light Source, ANL-Advanced Photon Source, LBNL-Molecular Foundry, ORNL-Center for Nanophase Materials Sciences, ANL-Center for Nanostructured Materials

♦ NIST: BT-2

Technical Back-Up Slides

Experiments

Protocol

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2011/0195324 A1 Zhang et al.

(43) Pub. Date: Aug. 11, 2011

(54)	4) METHODS AND PROCESSES TO RECOVER VOLTAGE LOSS OF PEM FUEL CELL STACK		Publication Classification (51) Int. Cl.	
(75)	Inventors:	Jingxin Zhang, Pittsford, NY (US); Lesley Paine, Rochester, NY (US); Amit Nayar, Pittsford, NY (US); Bable Malhaela Bittsford, NY	H01M 8/06 (2006.01) (52) U.S. CL 429/413 (57) ABSTRACT	
(73)	Assignee:	Konit Makharia, Pittstord, NY (US) GM GLOBAL TECHNOLOGY OPERATIONS, INC., DETROIT, MI (US)	A system and method for recovering cell voltage loss in a PEM fuel cell stack that include operating the stack at con- ditions that provide excess water that fluxhes away contami- nants deposited on the cell electrodes. Two techniques are described that both operate the stack at a relatively low tem perature and a cathode inlet RH above saturation. The first	
(21)	Appl. No.:	12/939,867	technique also includes providing hydrogen to the anode side of the stack and air to the cathode side of the stack, and	
(22)	Filed:	Nov. 4, 2010	operating the stack at a relatively low cell voltage. The second technique also includes flowing hydrogen to the anode side of	
	Related U.S. Application Data		the stack and nitrogen to the cathode side of the stack, using an external power source to provide a stack current density.	
(60))) Provisional application No. 61/303.108, filed on Feb.		and providing an anode humidity level that is significantly	

10, 2010.

Publication Classification					
1)	Int. Cl. <i>H01M 8/06</i>	(2006.01)			
2)	U.S. Cl		429/413		
7) ABSTRACT					
sys M ion nts	tem and method i fuel cell stack that is that provide exce deposited on the	or recovering cell vol t include operating the ess water that flushes a cell electrodes. Two to	tage loss in a stack at con- way contami- echniques are		
scr	ibed that both oper	ate the stack at a relati	vely low tem-		

5cm² Differential cell hardware Design from GM Patent

Recovery Protocol applied before each characterization

 T_{cell} = 30 °C, T_{anode} = 45 °C, $T_{cathode}$ = 35 °C

higher than the cathode humidity level.

- \textcircled Operate in H₂ pump mode to slightly negative voltages to desorb impurities, Reduce Pt
- \bigcirc Operate at high currents in H₂/Air to flush out impurities with generated water, restructure ionomer
- Catalyst AST: 0.6V(3s)- 0.95V(3s), 80°C, 100%RH

Samples Evaluated

- Umicore samples used for carbon corrosion study
 - EKAT 0424 : 0.1mg_{Pt}/cm² ELYST Pt300670, I/C = 0.95 (2 samples)
 - EKAT 0428 : 0.1mg_{Pt}/cm² ELYST 30PtA9029X, I/C = 0.77 (2 samples)
 - EKAT 0428 : 0.1mg_{Pt}/cm² ELYST Pt200380, I/C = 0.77 (2 samples)
 - EKAT0606 : 0.1mg_{Pt}/cm² ELYST Pt500550, I/C = 0.83 (5 samples)
 - EKAT0607 : 0.1mg_{Pt}/cm² ELYST 30PtA9029X, I/C= 0.77 (5 samples)
 - EKAT0608 : 0.1mg_{Pt}/cm² ELYST Pt500670, I/C = 0.95 (5 samples)
- Umicore samples used for catalyst AST studies
 - EKAT 0574 : 0.05mg_{Pt}/cm² ELYST Pt300670, I/C = 0.95 (5 samples)
 - EKAT 0575 : 0.1mg_{Pt}/cm² ELYST Pt300670, I/C = 0.95 (10 samples)
 - EKAT 0576 : 0.15mg_{Pt}/cm² ELYST Pt300670, I/C = 0.95 (5 samples)
 - EKAT0788 : 0.25mg_{Pt}/cm² ELYST Pt500550, I/C = 0.83 (5 samples)
 - EKAT0789: 0.4mg_{Pt}/cm² ELYST Pt500550, I/C= 0.83 (5 samples)
 - EKAT0790 : 0.25mg_{Pt}/cm² ELYST Pt500670, I/C = 0.95 (5 samples)
 - EKAT0791 : 0.4mg_{Pt}/cm² ELYST Pt500670, I/C = 0.95 (5 samples)
- TKK samples received for catalyst AST studies
 - TEC36E32, TEC36V32, TEC36E52, TEC36EA32, TEC36F32, TEC36VA32, TECNiE32

Comparison of High-Performance PtCo/HSC MEAs

H₂/Air, 80°C, 150kPa, 100%RH

- Best performing MEAs (70wt% Spray and 75wt% R2R) exhibit similar H₂/Air polarization performance
- Preliminary durability AST were performed showing losses in ... <u>O₂ transport?, Mass Activity?</u>
- Focus on comparing the electrode structure for Spray and R2R MEAs to explain the similarities/differences in performance and durability

Response to 2019 Reviewer Comments

Strengths

- clear objectives, excellent organization for efficient multiboratory coordination, different competencies (elaboration, testing and characterization, modeling), means, and different collaborations (e.g., laboratories, universities, and industries).
- Image of length scales, its efficient use of DOE resources, and its adequate integration of research partners.
- The composition of the consortium, the coordination of the project, and the wedefined role of the different partners involved are real strengths. ... strong focus on publication of the results share as much as possible with the international community.
- The multi-laboratory and multi-level approach to studying a broad range of higher-priority degradation and performance mechanisms is a key strength. The outstanding characterization capabilities really drive the in-depth understanding.
- ... very strong team and a very clear pathway for development toward FCTO goals.
- ... well-articulated project with excellent connections between the national laboratories.
- This project is an outstanding coordinated effort by some of the best folks in the country.
- Experimental resources at the laboratories and knowledge of materials and electrochemistic all converged and were coordinated.

Project weaknesses:

- There are no project weaknesses, per se
- It is difficult to find any weaknesses.
- Image and important project. The project team needs someone to assist in "seeing the big picture."
- how information moves between partners not .. clear whether we are seeing the result of several excellent pet projects, or a large volume of information (and possibly materials) is changing hands between the partners.
- …..the real operation vision of the work is missing; what is needed is an operating system with optimized durability and cost. ... global optimization is not (component level) Optimizing components should be done with a stack-/system-level input.
- The presentation's slides lack clarity for some protocols and conditions, such as the break-in procedure. The value of this work has not been established.
- ... its very large scope, which may lead to some loss of focus
- Using only sprayed electrodes appears also to be a weakness
- The project needs more industry input, deeper focus on fewer tasks, and a more holistic approach to study interfaces

Collaborations and Integration Review Comments

- 1. There is excellent collaboration with other national laboratories.
- 2. The structure of FC-PAD is based on collaborations. This aspect seems to be very well-thought-out and
- 3. The collaboration between the project's partners is intense and emerges clearly from the presentation.
- 4. The collaboration between the different partners is well structured and well managed
- 5. The collaboration between the different partners is well structured and well managed
- 6. The team has shown good collaboration with partners, both funded through the FOA and unfunded.
- 7. The rating here might not be fair, but the team did not do a particularly great job in the presentation of describing how the team is integrated.

Comments & Responses

- ...system level input, guidance, system level validation & stack-/system-level input
 - ♦ Normal input comes from FCTT; GM has been FC-PAD collaborator
 - ✤ Three new FC-PAD projects related to heavy-duty; will hopefully get input
 - Senerally, Fuel Cell Component R&D projects do not/have not conducted full stack/system level validation
 - > EU projects are structured differently, with OEMs conducting validation, but providing little public information

its very large scope.... (also got similar comment ~ last two years)
 HOWEVER, also got comments about expanding

- > AEM fuel cells and electrolysis.
- > project should also investigate a PGM- and cobalt-free catalyst.
- > More emphasis on heavy-duty applications
- Using only sprayed electrodes appears also to be a weakness
- Multiple labs make sprayed electrodes

 - ✤ MEAs (not sprayed) often come from Umicore, also Ion Power, IRD, W.L. Gore

Special Recognitions & Awards Issued

- David Cullen received the PECASE: Presidential Early Career Awards for Scientists and Engineers
- Kavi Chintam received the LANL 2019 Distinguished Student Award
- Karren More was named 2019 Fellow of the Microscopy Society of America (MSA), Microscopy & Microanalysis 2019

FC-PAD Publications

- 1. RL Borup, A Kusoglu, KC Neyerlin, R Mukundan, RK Ahluwalia, DA Cullen, KL More, AZ Weber, DJ Myers, **Recent Developments in** Catalyst-Related PEM Fuel Cell Durability, Current Opinion in Electrochemistry, 2020
- David A. Cullen, K.C. Neyerlin), Rajesh K. Ahluwalia, Rangachary Mukundan, Karren L. More, Rodney L. Borup, Adam Z. Weber, Deborah J. Myers, and Ahmet Kusoglu, New Roads and Challenges for Fuel Cells in Transportation: Light-Duty Lessons for Heavy-Duty Applications, submitted to Nature Energy
- 3. Busra Ergul-Yilmaz, Zhiwei Yang, Mike L. Perry, Karren L. More, Natalia Macauley, Rod Borup, and Tansel Karabacak, Microstructural Evolution and ORR Activity of Nanocolumnar Platinum Thin Films with Different Mass Loadings Grown by High Pressure Sputtering, submitted
- 4. Andrew M. Baker, Andrew R. Crothers, Kavitha Chintam, Xiaoyan Luo, Adam Z. Weber, Rodney L. Borup, Ahmet Kusoglu, Deconvoluting Morphology and Transport of Multivalent Cation-Exchanged Ionomer Membranes using Ce-PFSA as a Model System, in review at Macromolecules
- Siddharth Komini Babu, Dusan Spernjak, Rangachary Mukundan, Daniel S Hussey, David L Jacobson, Hoon T Chung, Gang Wu, Andrew J Steinbach, Shawn Litster, Rod Borup and Piotr Zelenay, Understanding Water Management in Platinum Group Metal-Free Electrodes using Neutron Imaging, in review at J. Power Sources
- 6. Lalit M Pant, Michael R Gerhardt, Natalia Macauley, Rangachary Mukundan, Rodney L Borup, Adam Z Weber, Along-the-channel modeling and analysis of PEFCs at low stoichiometry: Development of a 1+ 2D model, Electrochimica Acta 326, 134963 2019
- 7. S Komini Babu, D Spernjak, J Dillet, A Lamibrac, G Maranzana, S Didierjean, Olivier Lottin, RL Borup, R Mukundan, **Spatially resolved** degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation, v254, Applied Energy, 2019
- 8. Victoria M. Ehlinger, Ahmet Kusoglu, and Adam Z. Weber, **Modeling Coupled Durability and Performance in Polymer-Electrolyte Fuel Cells: Membrane Effects**, J. Electrochem. Soc., 166 (7), F3255-F3267 2019
- 9. Julio J. Conde, M. Antonia Folgado, P. Ferreira-Aparicio, Antonio M. Chaparro, Anamika Chowdhury, Ahmet Kusoglu, David Cullen, Adam Z. Weber, Mass-transport properties of electrosprayed Pt/C catalyst layers for polymer-electrolyte fuel cells, J. Power Sources, 427, 250-259 2019
- 10. Yu-Tong Mu, Adam Z. Weber, Zhao-Lin Gu, and Wen-Quan Tao, Mesoscopic Modeling of Transport Resistances in a Polymer-Electrolyte Fuel-Cell Catalyst Layer: Analysis of Hydrogen Limiting Currents, Applied Energy, 255, 113895 2019
- Tim Van Cleve, Sunilkumar Khandavalli, Anamika Chowdhury, Samantha Medina, Svitlana Pylypenko, Min Wang, Karren More, Nancy Kariuki, Deborah Myers, Adam Weber, Scott Mauger, Michael Ulsh, Kenneth Neyerlin, Dictating Pt-based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells; from Formulation to Application, ACS Applied Materials & Interfaces, 11 (50), 46953-46964 2019

FC-PAD Publications

- 12. A. Kusoglu, K. Vezzù, G. Hegde, G. Nawn, A.R. Motz, H.N. Sarode. G.M. Haugen, Y. Yang, S. Seifert, M.A. Yandrasits, S.J. Hamrock, C.M. Maupin, A.Z. Weber, V. Di Noto, A.M. Herring, 'ransport and Morphology of a Proton Exchange Membrane Based on a Doubly Functionalized Perflourosulfonic Imide Side Chain Perflourinated Polymer, Chemistry of Materials, 32, 38-59 2020
- 13. Andrew R. Crothers, Robert M. Darling, Ahmet Kusoglu, Clayton J. Radke, and Adam Z. Weber, **Theory of Multicomponent** Phenomena in Cation-Exchange Membranes, I: Thermodynamic Model and Validation, J. Electrochem. Soc., 167, 013547 2020.
- 14. Andrew R. Crothers, Robert M. Darling, Ahmet Kusoglu, Clayton J. Radke, and Adam Z. Weber, **Theory of Multicomponent Phenomena in Cation-Exchange Membranes, II: Transport Model and Validation**, J. Electrochem. Soc., 167, 013548 (2020)
- 15. Adlai Katzenberg, Anamika Chowdhury, Minfeng Fang, Adam Z. Weber, Yoshiyuki Okamoto, Ahmet Kusoglu, Miguel A. Modestino, Highly Permeable Perfluorinated Sulfonic Acid Ionomers for Improved Electrochemical Devices: Insights into Structure– Property Relationships, J. Am. Chem. Soc., 142 (8), 3742-3752 2020
- 16. Meron Tesfaye, Douglas Kushner, Ahmet Kusoglu, Interplay between Swelling Kinetics and Nanostructure in Perfluorosulfonic Acid Thin-Films: Role of Hygrothermal Aging, ACS Appl. Polym. Mater., 1 (4), 631–635 2019
- 17. D. I. Kushner, A. Kusoglu, N. Podraza, M.A. Hickner, **Substrate-Dependent Molecular and Nanostructural Orientation of Nafion Thin Films**, Advanced Functional Materials, (2019).
- 18. Peter J. Dudenas and Ahmet Kusoglu, Evolution of Ionomer Morphology from Dispersion to Film: An in Situ X-ray Study, Macromolecules, 52, 7779–7785 2019
- 19. Gregory M. Su, Isvar A. Cordova, Michael A. Yandrasits, Matthew Lindell, Jun Feng, Cheng Wang,, and Ahmet Kusoglu, **Chemical** and Morphological Origins of Improved Ion Conductivity in Perfluoro Ionene Chain Extended Ionomers, J. Am. Chem. Soc. 141, 13547–13561 (2020)
- 20. Andrew M Baker, Siddharth Komini Babu, Kavitha Chintam, Ahmet Kusoglu, Rangachary Mukundan, Rod L Borup, **Ce Cation Migration and Diffusivity in Perfluorosulfonic Acid Fuel Cell Membranes**, ECS Transactions 92 (8), 429-438 (2019)
- 21. K Chintam, KL More, KS Reeves, N Macauley, DE Hooks, RL Borup, **Microscopic Analysis of PEMFC Catalyst Layers**, ECS Transactions 92 (8), 95 (2019)
- 22. Kavitha Chintam, Krysta Waldrop, Andrew M Baker, Michael J Workman, Rangachary Mukundan, Jacob M LaManna, Daniel S Hussey, David L Jacobson, Cenk Gumeci, Nilesh Dale, John James Slack, Rod L Borup, Peter N Pintauro, Improved Water Management of Electrospun Nanofiber Membrane Electrode Assemblies at High Current Densities Measured in Operando Using Neutron Radiography, ECS Transactions 92 (8), 395

FC-PAD Publications

- 23. A. Chowdhury, R. M. Darling, C. J. Radke, and A. Z. Weber, 'Modeling Water Uptake and Pt Utilization in High Surface Area,' ECS Transactions, 92(8), 247-259 (2019). doi: 10.1149/09208.0247ecst
- J. G. Petrovick, D. I. Kushner, M. Tesfaye, N. Danilovic, C. J. Radke, and A. Z. Weber, Mass-Transport Resistances of Acid and Alkaline Ionomer Layers: A Microelectrode Study Part 1 - Microelectrode Development, ECS Transactions, 92(8), 77-85 (2019). doi: 10.1149/09208.0077ecst
- 25. J.J. Slack, C. Gumeci, N. Dale, N. Macauley, R. Mukundan, D. Cullen, B. Sneed, K. More, P. N. Pintauro, Nanofiber Fuel Cell MEAs with a PtCo/C Cathode, Journal of the Electrochemical Society, 166 (2019) F3202-F3209d
- Krysta Waldrop, John Slack, Cenk Gumeci, Nilesh Dale, Kimberly Shawn Reeves, David A Cullen, Karren L More, Peter N Pintauro, Electrospun Particle/Polymer Fiber Electrodes with a Neat Nafion Binder for Hydrogen/Air Fuel Cells, ECS Transactions 92 (2019) 595-602
- John J Slack, M Brodt, David A Cullen, Kimberly S Reeves, Karren L More, Peter N Pintauro, Impact of Polyvinylidene Fluoride on Nanofiber Cathode Structure and Durability in Proton Exchange Membrane Fuel Cells, Journal of The Electrochemical Society 167 (2020) 054517
- 28. Kabir, S.; Myers, D. J.; Kariuki, N.; Park, J.; Wang, G.; Baker, A.; Macauley, N.; Mukundan, R.; More, K. L.; Neyerlin, K.C., Elucidating the Dynamic Nature of Fuel Cell Electrodes as a Function of Conditioning: An ex Situ Material Characterization and in Situ Electrochemical Diagnostic Study. ACS Appl. Mater. Interfaces 2019, 11, 45016–45030. https://doi.org/10.1021/acsami.9b11365
- 29. Wang, M.; Park, J.; Kabir, S.; Neyerlin, K. C.; Kariuki, N.; Lv, H.; Stamenkovic, V.; Myers, D. J.; Ulsh, M.; Mauger, S. A., The Impact of Catalyst Ink Dispersing Methodology on Fuel Cell Performance Using In-situ X-ray Scattering, ACS Appl. Energy Mater. 2019, 2(9) 6417-6427. https://doi.org/10.1021/acsaem.9b01037

FC-PAD Presentations

- Gregory J. Kleen, Dimitrios C. Papageorgopoulos, Rod L. Borup, Adam Z. Weber (Invited), The FC-PAD Consortium: Advancing Fuel Cell Performance and Durability, 236th Meeting of the Electrochemical Society, Atlanta, GA, October 2019
- 2. K.L. More (invited), Advanced Microscopy Methods to Interrogate Materials and Interfaces in Fuel Cell Catalyst Layers, Advanced Manufacturing and Characterization of Fuel Cells and Electrolyzers Workshop, University of Connecticut, Storrs, CT, September 23-24, 2019.
- 3. Adam Z. Weber, **Role of Transport Phenomena in Polymer-Electrolyte Fuel-Cell Performance**, 1st International Fuel Cell Conference, Xi'an, China, November. (invited, plenary)
- 4. L. M. Pant, A. Z. Weber, Numerical Modeling of Hydrogen Fuel Cells using COMSOL, COMSOL Day, San Jose, CA. April 2020 (Invited talk)
- 5. Derek Richard (invited), Neutron Reflectometry for the Study of Thin-Film Ionomers: Effect of Substrate and Cation Exchange on Ionomer Structure, UCLA Chemical Engineering Dept., June 2019
- 6. Lalit M. Pant, Anamika Chowdhury, and Adam Z. Weber, **Development of a Multiscale Approach for Modeling Porous Electrodes**, 236th ECS Meeting, Atlanta, GA. October 2019. (**invited**)
- Adam Z. Weber, Fuel Cell Technology, ISMES Summer School, CalTech, June. (invited) D.A. Cullen, K.L. More, Understanding Electrode Design and Degradation in Fuel Cells, 257th ACS National Meeting & Exposition, San Diego, CA Aug. 25-29, 2019. (invited)
- 8. D.A. Cullen. Accelerated Catalyst Development for the Emerging Hydrogen Economy, UTSI MABE Departmental Series Seminar, Tullahoma, TN Oct. 9th, 2019. (invited)
- 9. D.A. Cullen, S. Cao, M. Chi, K.L. More, A. Weber, D.J. Myers, P. Zelenay, R. Borup, **A new view of fuel cell electrocatalysts through** multimodal electron microscopy, 236th ECS Meeting, Atlanta, GA Oct. 13-17, 2019. (invited)
- 10. D.A. Cullen, **Enabling hydrogen as an energy carrier through analytical electron microscopy**, AVS 66th International Symposium & Exhibition. Columbus, OH Oct. 20-25, 2019. (invited)
- 11. D.A. Cullen, **New opportunities and challenges for hydrogen fuel cells**, University of Cincinnati Department of Chemistry Colloquium, Cincinnati, OH Feb. 21st, 2020 (**invited**)
- 12. KC Neyerlin (invited) Dictating Pt-based electrocatalyst performance in PEFCs: From formulation to application ACS Fall 2019 San Diego, CA, August 25th -29th 2019.
- Michael J. Workman, J. Beau W. Webber, Mike L. Perry, Robert M. Darling, Karren More, Rangachary Mukundan, Rodney L. Borup, Analysis of PEMFC Electrode Pore Structure – Bridging the Mesoscale Gap, 236th Meeting of the Electrochemical Society, Atlanta, GA, October 2019

FC-PAD Presentations

- R. K. Ahluwalia, X. Wang, and C. F. Cetinbas, Oxygen Transport in Electrodes with Degraded d-PtCo/C Cathode Catalyst, 236th Meeting of the Electrochemical Society, Atlanta, GA, 16 October 2019
- 15. Kavitha Chintam, Karren More, Shawn Reeves, Natalie Macauley, Dan Hooks, Rod Borup, **Microscopic Analysis of PEMFC Catalyst** Layers, 236th Meeting of the Electrochemical Society, Atlanta, GA, October 2019
- 16. K. Chintam, K. Waldrop, A. M. Baker, M. J. Workman, R. Mukundan, J. M. LaManna, D. S. Hussey, D. L. Jacobson, J. J. Slack, P. N. Pintauro, and R. L. Borup, Improved Water Management of Electrospun Nanofiber Membrane Electrode Assemblies at High Current Densities Measured in Operando using Neutron Radiography, 236th Meeting of the Electrochemical Society, Atlanta, GA, October 2019
- 17. A. R. Crothers, R. M. Darling, A. Kusoglu, C. J. Radke, A. Z. Weber, **Thermodynamics of Ion and Water Uptake in Phase-Separated Ion-Exchange Membranes**, AIChE Annual Meeting, Orlando, FL. (2019)
- 18. A. R. Crothers, D. I. Kushner, R. M. Darling, A. Kusoglu, C. J. Radke, A. Z. Weber, **Theory of Multi-Ion Transport and Thermodynamic Phenomena in Solvent-Filled Membranes**, ECS Fall Meeting, Atlanta, GA. (2019)
- 19. A. Kusoglu, C. Arthurs, D. Kushner, Characterization of Mechanical Behavior and Stability of Membranes for Energy Conversion Devices, MRS Meeting, Boston. Dec 2019
- 20. G.M. Su, I.A. Cordova, M. Yandrasits, M. Lindell, J. Feng, C. Wang, A. Kusoglu, **New Insights into the Morphology of Perfluoro Ionene Chain Extended Ionomers from Resonant X-Ray Scattering and Spectroscopy**, MRS Meeting, Boston. Dec 2019
- 21. G.M. Su, I.A. Cordova, M. Yandrasits, M. Lindell, J. Feng, C. Wang, A. Kusoglu, **Chemical and Morphological Origins of Improved Transport in PFICE Ionomers**, ECS Meeting, Atlanta, GA. 2019
- 22. V.M. Ehlinger, A. Kusoglu, A.Z. Weber, Modeling Impact of Ce on Fuel-Cell Performance and Durability, ECS Meeting, Atlanta, GA. 2019
- 23. P.J. Dudenas, A.Z. Weber, A. Kusoglu, Synchrotron-Based Characterization of Perfluorinated Sulfonic-Acid Ionomers, ECS Meeting, Atlanta, GA. 2019
- 24. A.R. Crothers, D.I. Kushner, R.M. Darling, A. Kusoglu, C.J.Radke, A.Z. Weber, **Theory of Multi-Ion Transport and Thermodynamic Phenomena in Solvent-Filled Membranes**, ECS Meeting, Atlanta, GA. 2019
- 25. I.A. Cordova, A. Kusoglu, G.M. Su, D. Kilcoyne, J. Feng, C. Wang, Multimodal Resonant X-ray Scattering: Elucidating Electrochemical Membranes, ECS Meeting, Atlanta, GA. 2019
- 26. Adam Z. Weber, Water and Thermal Management in Polymer-Electrolyte Fuel Cells, 235th ECS Meeting, May, Dallas
- 27. Nancy N Kariuki, Max Gebhard, Anil U Mane, Magali Ferrandon, Ahmed A Farghaly, Jeffrey W Elam, Nemanja Danilovic, Deborah J Myers, **Highly Active and Durable Ir-Pt Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Oxidation Reactions**, 235th ECS Meeting, May 2019, Dallas, TX.

FC-PAD Presentations

- 28. Sarah A. Berlinger, Bryan D. McCloskey, and Adam Z. Weber, **Understanding Polymer/Particle Interactions in Fuel-Cell Inks using Model Systems**, 236th ECS Meeting, Atlanta, GA. October 2019.
- 29. John G. Petrovick, Douglas I. Kushner, Meron Tesfaye, Nemanja Danilovic, and Adam Z. Weber, Mass-Transport Resistances of Acid and Alkaline Ionomer Layers: A Microelectrode Study, 236th ECS Meeting, Atlanta, GA. October 2019. (Poster)
- 30. Peter Dudenas, Adam Weber, Ahmet Kusoglu, Synchrotron-Based Characterization of Perfluorinated Sulfonic-Acid Ionomers, 236th ECS Meeting, Atlanta, GA. October 2019.
- 31. Victoria M. Ehlinger, Ahmet Kusoglu, Adam Z. Weber, **Modeling Impact of Ce on Fuel-Cell Performance and Durability**, 236th ECS Meeting, Atlanta, GA. October 2019.
- 32. Lalit M. Pant, and Adam Z. Weber, Understanding Heat and Water Management in PEM Fuel Cells, ASME IMECE conference, Salt Lake City, UT. November 2019.
- 33. Anamika Chowdhury, Robert M. Darling, Clayton J. Radke and Adam Z. Weber, **Catalyst Layer transport resistance: Role of ionomer content and chemistry**, 236th ECS Meeting, Atlanta, GA. October 2019.
- 34. Andrew Crothers, Robert Darling, Ahmet Kusoglu, Michael Perry, Clayton Radke, and Adam Z. Weber, **Understanding Transport Phenomena in Fuel-Cell and Flow-Battery Ion-Conducting Membranes,** ENSTIN 2019, Pilanesberg, South Africa, August.
- 35. A. Chowdhury, J. Petrovick, A. Kusoglu, N. Danilovic, C. J. Radke, A. Z Weber, **Resistances in low-Pt-loaded catalyst layers from a mass transport and ionomer point of view**, European Fuel Cell Durability conference, La Grande Motte, France, September.
- 36. Sarah A. Berlinger, Clayton J. Radke, Bryan D. McCloskey, Adam Z. Weber, **QCM-D Study of the Solvent-Polymer-Catalyst Particle** Interface in Fuel-Cell Inks, AIChE 2019, Orlando, FL. November 2019.
- 37. D.A. Cullen, Atomic-level insights into the next generation of fuel cell catalysts, CNMS Seminar Series, Oak Ridge, TN Dec. 11th, 2019.
- 38. D.A. Cullen, Atomic-level insights into fuel cell catalysts, Presented at Giner Inc. Newton, MA Dec. 22nd, 2019
- 39. Andrew M. Baker, Siddharth Komini Babu, Kavitha Chintam, Ahmet Kusoglu, Rangachary Mukundan, Rod L. Borup, Cerium Migration and Diffusivity in PFSA Fuel Cell Membranes, 236th Meeting of the Electrochemical Society, Atlanta, GA, October 2019
- 40. D. Richard, K. Chintam, M. J. Workman, A. Baker, K. L. More, K. S. Reeves, J. Dura, N. Macauley, P. Dudenas, A. Z. Weber, E. Watkins, R. Mukudan, R. L. Borup, Fundamental Characterization of Catalyst Layer Ionomer Interactions in PEM Fuel Cells, Fuel Cell Seminar, Nov 5-7 2019, Long Beach, CA
- 41. V. M. Ehlinger, A. R. Crothers, A. Kusoglu, A.Z. Weber, **Modeling Synergistic Mechanical and Chemical Degradation in Fuel-Cell Membranes**, Chemical and Biomolecular Engineering Colloquium, University of California Berkeley, Berkeley, CA. April 2020
- 42. A. R. Crothers, A. Kusoglu, C. J. Radke, A. Z. Weber, **Theory of Multicomponent Mass-Transport in Solvent-Filled, Ion-Conducting Membranes**, Chemical and Biomolecular Engineering Colloquium, University of California Berkeley, Berkeley, CA. February 2020

FC-PAD Presentations

- 43. K. C. Neyerlin, T. Van Cleve, G. Wang, A. G. Star, S. Kabir, L. Osmieri, S. Khandavalli, M. Wang, M. Ulsh, S. A. Mauger, S. Medina, and S. Pylypenko, Electrode Layer Development and in Situ Diagnostic Characterization in Low Temperature Fuel Cells, Spring ECS Meeting, Dallas, TX (May 2019).
- 44. Van Cleve, T; Khandavalli, S; Chowdhury, A; Medina, S; Pylypenko, S; Weber, A; Mauger, S; Neyerlin, K.C. In situ Electrochemical Techniques to Determine Ionomer Coverage in PEFC Electrodes. ECS Meeting, Atlanta, GA, Oct 2019.
- 45. Van Cleve, T; Khandavalli, S; Medina, S; Pylypenko, S; Neyerlin, K.C. In situ Electrochemical Techniques to Determine Ionomer Coverage in PEFC Electrodes. AIChE Meeting, Orlando, FL, Nov 2019.
- 46. Van Cleve, T; Mooney, M; Wang, G; Kabir, S; Neyerlin, K. C. Effect of Ionomer Coverage on Pt Electrocatalyst Performance in PEFCs. AIChE Meeting, Orlando, FL, Nov 2019.
- 47. S. Kabir, S. Khandavalli, T. V. Cleve, S.Medina, S. Pylypenko, N. N. Kariuki, D. Myers, K. L. More, S. A. Mauger, M. Ulsh, and K. C. Neyerlin, Electrochemical and Rheological Investigations of Catalyst-Solvent-Polymer Ink Formulations for Electrospun Fuel Cell Electrode Structures, 236th ECS Meeting, (October 13-17) 2019, Atlanta, GA. Abstract MA2019-02 1445
- 48. S. Kabir, L. Anderson, S. Medina, S. Pylypenko, and K. C. Neyerlin, **Electrospinning and MEA Conditioning As a Tool for Designing Optimized Electrode Structures for Fuel Cell Applications**, 235th ECS Meeting (May 26-31, 2019), Dallas, TX. Abstract #121883
- 49. Sergio A. Herrera, Rangachary Mukundan, David A. Cullen, Karren L. More, Deborah J. Myers, Rod L. Borup, Effect of Carbon Support on the Durability of d-PtCo Catalysts in PEM Fuel Cells, 236th Meeting of the Electrochemical Society, Atlanta, GA, October 2019

