

Vapor Deposition Process for Engineering of Dispersed PEMFC ORR Pt/NbO_x/C Catalysts

P.I. – Jim Waldecker Ford Motor Company May 29, 2020

FC162

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 1/1/2017
- Project End Date: 9/30/2020
- Percent complete: 85%

Barriers

- A. Durability
- B. Cost
- C. Performance

Budget

- Total project budget: \$2,366,412
 - Total recipient share: \$518,883
 - Total federal share: \$1,847,529
 - Total DOE funds spent*: \$1,387,243
 - * As of 3/31/2020

Partners

- Oak Ridge National Laboratory
 - Small batch catalyst production
- Exothermics, Inc.
 - Large batch catalyst production
- University of Michigan
 - TEM, XPS, other characterization
- Northeastern University
 - X-ray absorption spectroscopy
- IRD (EWII) Fuel Cells LLC
 - CCM fabrication, fuel cell testing

Relevance

<u>**OBJECTIVE</u>**: Develop, integrate, and validate a new cathode catalyst material by developing and optimizing a vacuum powder coating physical vapor deposition (PVD) process</u>

- <u>Develop a New Cathode Catalyst Powder</u>
 Pt/NbO_x/C for high durability, power density, mass activity
- Improve the Catalyst Powder Manufacturing Process

 PVD with superior reproducibility over solution based methods
- Demonstrate the PVD Process is Scalable in a Cost Effective Manner
 - Scale up from small batch (~ 1-2 g) to large batch (20-40 g)
- <u>Show Ease of Integration</u>
 - Powders amenable to already established CCM/MEA manufacturing processes (ink processes)

This project focuses not just on a higher performing and more durable novel catalyst, but also on making the catalyst with a reproducible, scalable process.

Relevant Targets

The targets below are specified as part of quarterly milestones or go/no-go decisions:

MYRDD Table 3.4.5 Technical Targets: MEAs for Transportation Applications

Characteristic	Units	2020 Target	
Performance at rated power	mW/cm ² at 150 kPa (abs)	1000	
MYRDD Table 3.4.7 Technical Targ	ets: Electrocatalysts for Transportatio	n Applications	
Characteristic	Units	2020 Target	
PGM content at rated power	g _{PGM} /kW _{gross} at 150 kPa (abs)	0.125	
PGM loading	mg _{PGM} /cm ² total	0.125	
Mass activity	A/mgPGM at 900 mV _{iR-free}	0.44	
Electrocatalyst stability (0.6 ↔ 0.95 V)	% mass activity loss after 30K cycles	<40	
Loss at 0.8 A/cm ² (0.6 \leftrightarrow 0.95 V)	mV loss after 30K cycles	<30	
Support stability (1.0 \leftrightarrow 1.5 V)	% mass activity loss after 5K cycles	<40	
Loss at 1.5 A/cm ² (1.0 \leftrightarrow 1.5 V)	mV after 5K cycles	<30	

In addition to activity, this project will also focus on high current density.

Approach: Tasks and Schedule

		I I	20	017		I	201	18		I 2019		I	2	202	20		
	Quarter	0	1	2	3	4	5	6	7	8	9	10	11	12	1	3	14
TASK 1:	Development, Characterization, and Validation of Catalyst Material and Development and																
	Implementation of PVD process	para	mete	ers													
1.1	Develop the Catalyst Matrix														Π		
1.2	Small Batch Catalyst Synthesis and Carbon Fluidization																
1.3	Cataly st Powders Materials Characterization														Γ		
1.4	Synthesis of Catalytic Material with Solution Based Method														Π		
1.5	Target Processing, Chamber Conversion, and LargeBatch Carbon Nanoparticle Vacuum Fluidization																
1.6	XAS Evaluation of BOL and Cycled Cataly st Powders																
1.7	Processing of Large Batch Sputter Deposition on Powder																
TASK 2:	Catalyst Layer Development and	dME	A Va	lidati	on												
2.1	Baseline Materials Specification and Testing Protocol Development for DOE MEA Validation Cycling																
2.2	Catalyst Layer and MEA Development with Process Optimization																
2.3	MEA BOL Validation																
2.4	MEA Cy cling Validation																
TASK 3:	Project Management and Report	ting															
3.1	Project Management																
3.2	Documentation and Reporting																

ORNL

EXOTHERMICS

Small batch: 0.5-2.5 gram batches from ORNL

Large batch: 35-40 gram batches at Exothermics

Budget Period 1 Milestones: 1/1/2017 – 3/31/2018

Milestone #1 (Q1): Demonstrate that small batch PVD catalyst synthesis has a narrow metal particle size distribution (2-10nm) on the carbon powder via TEM	Line-of-sight sputtering yields wide Pt particle size distributions. Narrow distribution may not be necessary for performance, durability. Future particle size distribution milestones removed.
Milestone #2 (Q2):Demonstrate that small batch PVDcatalyst synthesis is able to reliably reproduce Pt and Nbloadings (with <10% variation) on the carbon powder by XRF	Repeatability shown for Pt within +/- 10% of average. Nb within +/- 40% at very low average weight percent (0.9%).
Milestone #3 (Q3): RDE testing of PVD Pt/NbO _x /HSAC catalysts demonstrates a BOL mass activity (at 0.9 V) above 0.40 A/mg _{PGM}	Project has shown 23 samples to have met this milestone: 10 from ORNL, 8 from Ford APD (small batch), and 5 from Exothermics (large batch). 14 non-alloyed, 9 alloyed. Pt wt% from 13-71% (22 with 17% or higher).
Go/No-Go Decision Point for Budget Period 1 (end of Year 1): Validation of PVD deposited catalyst powders via MEA BOL Testing with 40-50 cm ² single cell having a cathode loading of $\leq 0.150 \text{ mg}_{PGM}/\text{cm}^2$ giving a BOL mass activity of ≥ 0.30 A/mg _{PGM} at 900 mV _{iR-free} following the protocols given in Table 3.4.7 of ECTO'S MYBDD Plan.	Project has shown 4 samples to have met this milestone: 1 from ORNL (small batch), 3 from Exothermics (large batch). 2 non- alloyed, 2 alloyed.

Project has passed all budget period 1 milestones.

Budget Period 2 Milestones: 4/1/2018 – 3/31/2019

<u>Revised:</u> Milestone #4 (Q5): Determine Pt, NbOx, C interactions in PVD Pt/NbOx/Ccatalysts using elemental mapping, TEM, XAS, XPS; provide comparisonsPVD Pt/NbOx/C and Pt/C	Pt adjacent to or on top of deposited NbOx (amorphous, electronically conducting) enhancing ORR activity & durability.					
<u>Revised:</u> Milestone #5 (Q6): Durability comparison between PVD Pt/NbOx/C, PVD Pt/C, and Pt/C IRD	Partially crystallized nano-carbon particle with proper amount of NbOx & Pt necessary					
Milestone #6 (Q7):Large batch PVD catalyst - > 500 mW/cm² at Q/ ΔT_i < 1.45kW/°C, 0.125 mg _{PGM} /cm², P _{air,in} < 150 kPa	608 mW/cm2 achieved at Q/ Δ T=1.45 at 94°C (MYRDD Table P6 conditions)					
Milestones #7-8 (Q8): < 40% mass activity loss and < 100 mV loss at 0.8 A/cm² in electrocatalyst cycle (0.6-0.95 V); < 40% mass activity loss and < 200 mV loss at 1.5 A/cm² in support corrosion cycle (1-1.5 V)MA goal & <100 mv loss @ 0.8 elecrocatalyst cycle met. (Q7-8 Support corrosion cycle met. (Q7-8) Support corrosion cycle met. (Q7-8) Support corrosion cycle met. (Q7-8)						
	0.125 mg _{PGM} /cm ² on 5 cm ² single cell.					
Budget Period 3 Milestones: 4/1/2019 – 9/30 (no activity from 4/1/2019 to 9/30/2019, no-cost extension 4/1/20 - 9/30/2020)	0/2020					
Milestone #10 (Q14): Large batch PVD catalyst - 1) mass activity > 0.40 A/mg _{PGM} an (30K cycles) with < 40% loss in mass activity (RDE)	d 2) electrocatalyst AST					
Milestone #11 (Q14): Large batch PVD catalyst, $\leq 0.125 \text{ mg}_{PGM}/\text{cm}^2 - BOL$ mass activ	vity of ≥ 0.44 A/mg _{PGM}					
Milestone #12-14 (Q14): Large batch PVD catalyst - > 1,000 mW/cm ² at Q/ Δ T _i < 1.45 kW/°C, for 0.125 mg _{PGM} /cm ² , P _{air,in} ≤ 150 kPa; < 40% mass activity loss and < 30 mV loss at 0.8 A/cm ² in electrocatalyst cycle (0.6-0.95 V); < 40% mass activity loss and < 30 mV loss at 1.5 A/cm ² in support corrosion cycle (1-1.5 V)						
Milestone #15 (Q14): A set of MEAs (6 or more, each with active area \ge 50 cm ²) is r independent testing at a DOE-approved location.	nade available for IRD					

Budget Period 2 milestones revised to focus on material characterization and durability. Milestones 4 & 5 met, 6 met MYRDD Table p6 conditions, 7&8 MA loss after AST test met, initial in-cell test at 0.125 mg_{PGM}/cm² met

7

Collaborations

Partner	Project Roles
Ford	Prime, Industry. Responsible for project management (Task 3), XRF measurements for Pt, Nb wt%, RDE testing (Task 1). Support role for MEA fabrication and fuel cell testing (Task 2).
CAK RIDGE National Laboratory	FFRDC partner. Responsible for production of small batch Pt/NbO _x /C and for transferring lessons learned from small batch catalyst optimization to Exothermics for large batch production. Support role for XRF measurements. (Task 1)
Exothermicsing	Sub-contractor, Industry. Responsible for production of large batch Pt/NbO _x /C. Can support with BET, PSD characterization. (Task 1)
UNIVERSITY OF MICHIGAN	Sub-contractor, University. Responsible for TEM and particle size measurements. Can also support with SEM, XPS, and other characterization techniques. (Task 1)
Northeastern University Center for Renewable Energy Technology	Sub-contractor, University. Role is to help understand by XAS whether coordination numbers, interatomic distances, and the presence of adsorbates (e.g. –OH) influence performance and durability (Task 1).
IRD Fuel Cells (EWII)	Sub-contractor, Industry. Responsible for MEA fabrication using Pt/NbOx/C catalysts on the cathode, and for fuel testing (Task 2).

All collaborations are within the DOE Hydrogen and Fuel Cells Program

Relevance: Targets and Status

The targets below are specified as part of quarterly milestones or go/no-go decisions:

MYRDD Table 3.4.5 Technical Targets: MEAs for Transportation Applications

Characteristic	Units	2020 Target	Project Status						
Performance at rated power	mW/cm² at 150 kPa (abs)	1000	750 ¹ , 720 ²						
MYRDD Table 3.4.7 Technical Targets: Electrocatalysts for Transportation Application									
Characteristic	Units	2020 Target	Project Status						
PGM content at rated power	g _{PGM} /kW _{gross} at 150 kPa (abs)	0.125	0.200 ¹ , 0.208 ²						
PGM loading	mg _{PGM} /cm ² total	0.125	0.150 ^{1,2}						
Mass activity	A/mgPGM at 900 mV _{iR-free}	0.44	0.352 ¹ , 0.335 ² ,0.389 ³						
Electrocatalyst stability (0.6 \leftrightarrow 0.95 V)	% mass activity loss after 30K cycles	<40	14% ³ ,9% ⁴ , 10% ⁵ & 1% ⁶						
Loss at 0.8 A/cm ² (0.6 \leftrightarrow 0.95 V)	mV loss after 30K cycles	<30	70 mV³,71 mV ⁴ & 40 mV ⁵						
Support stability (1.0 \leftrightarrow 1.5 V)	% mass activity loss after 5K cycles	<40	7.1%7						
Loss at 1.5 A/cm ² (1.0 \leftrightarrow 1.5 V)	mV after 5K cycles	<30	25 mV ⁷ @ 0.4 A/cm ²						

¹ Measured using Exothermics 180308 (PtCo/NbOx/Ketjen black). High current measurements at 0.6 V, 80°C (Q/ Δ T=2.44), fully humidified. ² Measured using ORNL-L-013 (Pt/NbOx/acetylene black). High current measurements at 0.6 V, 80°C (Q/ Δ T=2.44), fully humidified. ^{3,4,5,6} Measure using EXO180920, ORNL-L-034 and ORNL-L-030, ORNL-L-032 respectively, anode loading 0.05 mg_{PGM}/cm². ⁷ Measured using EXO180920, anode loading 0.025 mg_{PGM}/cm² on a 5 cm² single cell.

Durability was the focus, high current testing still to come.

Accomplishments and Progress: GNG 2

Strategy: optimize the concentration and morphology of NbO_x and Pt on acetylene black (AB) carbon nano-particles:

- ORNL made 6 samples with 1.5, 3 and 6 wt.% NbO_x and 20, 30 wt.% Pt.
- Exothermics two large batch samples with and without NbO_x
- Umicore wet-chemical synthesized sample with comparable PVD Pt.

	1.5% NbOx	3%NbOx	6%NbOx
 20% Pt	ORNL-L-037	ORNL-L-035	ORNL-L-034
30% Pt	ORNL-L-038	ORNL-L-032	ORNL-L-030

Sample Name	Temperature	Nb Deposition: Ar/O2 Ratio	Nb Deposition: Time (hours)	Nb Deposition: Power (W)	Pt Deposition Time (hours)	Pt Deposition: Power (W)	Pt Loading from XRF (wt.%)	NbOx Loading from XRF (wt.%)
ORNL-L-013	Room (off-gassed to 400C for 12 hours)	10	1.5	150	1.5	140	35.8	0.61
ORNL-L-030	Room (off-gassed to 400C for 12 hours)	10	18.7	150	0.97	140	27.7	6.3
ORNL-L-032	Room (off-gassed to 400C for 12 hours)	10	9.3	150	1	140	30.6	3.82
ORNL-L-034	Room (off-gassed to 400C for 12 hours)	10	18.7	150	0.67	140	18.1	8.0
ORNL-L-035	Room (off-gassed to 400C for 12 hours)	10	5.6	150	0.58	140	21.5	2.72
ORNL-L-037	Room (off-gassed to 400C for 12 hours)	10	3.9	150	0.63	140	21.3	1.77
ORNL-L-038	Room (off-gassed to 400C for 12 hours)	10	3.7	150	1	140	28.2	1.34
EXO 180109*	off-gassed to >200C; sputter at >100C	32.3	8	100	5	300	19.9	1.75
EXO 180920	off-gassed to >200C; sputter at >100C	32.3	8	100	4.5	300	20.0	2.5
EXO 181114	off-gassed to >200C; sputter at >100C	NA	NA	NA	4.5	300	30.2	NA
Commercial Reference ^{\$}	wet chemical commercial	NA	NA	NA	NA	NA	28.3	NA

* Ketjen black carbon

\$ high surface a rea carbon (Umicore Pt catalyst)

All other samples are supported on acetylene black

Fuel Cell Testing Results – AST: GNG2

All anodes comprising 0.05 or 0.025 mg Pt/cm² and all cathodes comprising 0.10 mg Pt/cm²

- BOL MA measured using RDE protocols and settings according to MYRDD table P1
- MA % loss (A/g Pt) are at 0.9 V iR free and corrected for H_2 x-over
- All AST measured in 50 cm² single-cell hardware (FCT hardware)

After GNG1, has issue with in-cell MA test, RDE MA valid

					EC TEST	EC TEST	EC TEST	PDE	EC TEST	EC TEST			
Sample	Carbon Support	% Pt	% NbOx	I/C	BOL ECA _{Avg} (m ² /g _{pt}))	EoL ECA _{Avg} (m ² /g _{pt}))	BoL ECA @ RT	BOL Mass Activity (A/gPt)	BOL Mass Activity (A/gPt)	EOL Mass Activity (A/gPt)	ECA (% Loss)	MA (% Loss)	Voltage Loss at 0.8 A/cm^2 after 30 K Cycles (pre-ECA, mV)
Exothermics 180109	Ketjen	19.9	1.75	0.5	20.4	6.7		455	107	65	67	39	224
Exothermics 180209	Ketjen	26.8	0	0.8	23.2	8.1		440	93	60	65	35	180
Exothermics 180920	Acetylene black	20.0	2.5	0.5	23.6	9.4		525	109	94	60	14	190
Exothermics 180920	Acetylene black	20.0	2.5	0.8	33.2	7.3		476	73	49	78	33	70
Exothermics 180920 repeat low PGM	Acetylene black			0.8	27.0	19.7		490	95	81	27	15	65
Exothermics 181114	Acetylene black	20.0	0	0.5	12.5	-		430	111	-			
Exothermics 181114	Acetylene black	20.0	0	0.8		-		422					
Commercial reference	High surface area	28.3	0	0.5	25.1	15.0		560	300	196	40	35	59
Commercial reference	High surface area	28.3	0	0.8	33.0	9.9		574	375	202	70	46	70
ORNL-L-013	Acetylene black	35.8	0.61	0.5	26.8	10.2		409	113	64	62	43	120
ORNL-L-019	Acetylene black	37.5	0	0.5	25.1	11.4		385	260	125	55	52	180
ORNL-L-034	Acetylene black	18.1	8.0	0.5	30.9	15.4		144	58	53	50	9	71
ORNL-L-030	Acetylene black	27.7	6.3	0.5	12.9	12.5		231	92	83	3	10	40
ORNL-L-032	Acetylene black	30.6	3.82	0.5	19.1	10.0	38.3	355	74	73	48	1	130
ORNL-L-035	Acetylene black	21.5	2.72	0.5	19.5	17.5	54.8	287	57	55	10	4	160

- MA drop of below 30% has been achieved in samples made on both small batch ORNL-L-030, 032, 034 & 035 as well as large batch EXO180920 with anode Pt loading of 0.05 mgPt/cm², and also on EXO180920 with 0.025 mgPt/cm² anode loading.
- Best durability combination obtained on EXO180920 with MA drop of 15% and voltage loss of 65 mV at 0.8 A/cm² with a power density of 538 mW/cm² at Q/dT of 2.44

In-Cell Characterization & Transport Resistance: GNG2

 5 cm² single cell test at anode Pt loading of 0.05 mgPt/cm² show samples meet 2nd go/no-go MA target towards electrocatalyst AST

371 A/g-Pt BOL 285 A/g-Pt after 30 cycle MA drop 7.1% AST cycles MA drop 23 % 250 200 BOL 30K AST cycle EXO180920 Pol-curve 120 5 cm² 80C 150 KPa 100RH 1.0L/2.4L H_{*}/O_{*} pol-cu 1.20 0.075 me.Pt/ ode 0.10 mm.0t/cm² cathode 150 kps 800 1000H 1.01/m H 3.41/m/ 1.00 OCV 0.983V for BOI 0.80 0.6 BOI 0.40 30K AST cvcl 0.00 200 300 400 Current (mA/cm2)

 5 cm² single cell test at a node Pt loading of 0.025 mgPt/cm² show samples meet 2nd go/no-go MA target towards electrocatalyst AST & carbon corrosion cycling.

Exo 180920 meets 2nd Go/No-go MA targets

Mass Transport Resistance measurements to clarify the effects of novel catalysts on cell performance

NREL performed limiting current testing on 3 cm² cell

- "B" refers to use of low EW ionomer
- B1=0.8 I/C; B2=0.5; B3=0.3
- "REF" refers to commercial baseline
- No "REF" = Exothermics 180920
- At higher I/C (0.5 and 0.8), non-pressure dependent mass transport resistance (R_{NP}) is roughly the same for Exothermics 180920 and the commercial standard
- Low I/C catalyst layers: increase in R_{NP} for Exothermics 180920 versus commercial baseline

NbO_x incorporation into the catalyst does not increase nonpressure dependent mass transport resistance (RNP)

Microstructural Analysis with TEM & XPS:GNG2

--- understanding the morphology of NbO_x and Pt

ORNL-L-013 (35.8% Pt, 0.61% NbOx, AB, MA=335 A/cm², MA drop =43%, 0.8 A/cm² voltage drop = 120 mV)

Exo180920 (20.0% Pt, 2.5% NbOx, AB, MA=389 A/cm2, MA drop =25%, 0.8A/cm2 voltage drop = 70 mV)

• More NbO_x forming a uniform distribution of NbO_x, Pt forming partially connected network on top & adjacent to NbO_x, enhancing ORR activity & durability

Electronic Interaction through XAS:GNG2

NbO_x-induced durability improvement

Lessons Learned & Strategy into Budget Period 3 Lessons Learned through GNG 2

- By controlling the amount and morphology of NbO_x and Pt, both Exothermics & ORNL samples have generated samples that passed 2nd GNG criteria.
- Increasing the NbO_x concentration in general will reduce the loss in MA & voltage drop at 0.8 A/cm².
- Pt sitting on top & around amorphous NbO_x necessary for both high activity & durability, partially connected Pt thin Pt 3-D network is preferred.

Strategy into budget period 3

- Strategy
 - Refining the developed morphology: on the AB nano carbon substrate sequentially sputter NbO_x then Pt for in-cell tests against all milestones.
 - Enhancing the electronic interactions
 between the base niobium species and
 the platinum electrocatalyst:
 - Co-sputtering a middle layer of NbO_x +Pt (B)
 or Nb + Pt (A) on top of the NbO_x (and a Pt top layer)
 - NbN_x instead of NbO_x (C)
 - First Pt on carbon then NbO_x thin layer (D)

Accomplishments and Progress in Budget Period 3

- ORNL made 7 samples: similar composition with Umicore (044), similar Pt deposition then NbO_x (046), Pt+Nb co-deposition in O₂ (047), Nb nitride + Pt (048), similar composition to ORNL-L-013 (049), NbO_x then Pt+Nb co-deposition (050), & Pt+Nb co-deposition in N₂
 (051).
- Exothermics made 4 large batch (30 to 50 grams) samples with NbOx (3 to 8 wt.%) & Pt (25 to 35 wt.%) in various layouts: NbO_x then Pt (Exo191112 & Exo191121), repeat run of Exo180920 (Exo200115), NbO_x & (Pt+NbO_x) co-deposition (Exo200218), NbO_x & (Pt+Nb) co-deposition (Exo200228).
 - Exothermics

• Umicore wet-chemical synthesized sample (reference) with comparable PVD Pt.

Sample Name	Purpose	Carbon Support	Pt Loading from XRF (%)	NbOx Loading from XRF (%)	Average Particle Size from TEM (nm)	Pt/Nb Atomic Ratio from XPS	Nb 3d 5/2 Peak Location (eV)
ORNL-L-044	Pure Pt, comparing with Umicore ref	AB	28.0	0.00	2.0	N/A	N/A
ORNL-L-046	Pt first then NbOx on top (D)	AB	30.3	1.56	1.9	11.82	206.40
ORNL-L-047	Pt and Nb co-sputtered in O ₂	AB	<mark>39.5</mark>	5.39	1.9	3.65	206.37
ORNL-L-048	Nb deposited in N ₂ then Pt in Ar (C)	AB	<mark>12.5</mark>	<mark>2.03</mark>	<mark>1.9</mark>	<mark>4.18</mark>	<mark>206.74</mark>
ORNL-L-049	NbOx then Pt on top	AB	<mark>32.4</mark>	1.95	2.0	15.06	206.52
ORNL-L-050	NbOx first then co-sputter Nb/Pt	AB	<mark>45.1</mark>	<mark>6.09</mark>	<mark>2.3</mark>	<mark>4.09</mark>	206.38
ORNL-L-051	Pt and Nb co-sputtered in N ₂	AB	<mark>39.8</mark>	<mark>6.87</mark>	<mark>1.9</mark>	<mark>3.25</mark>	206.69
Exo 191112	NbOx then Pt on top	AB	35.0	7.18	1.8	3.07	206.95
Exo 191121	NbOx then Pt on top	AB	29.9	6.39	2.1	3.40	206.95
Exo 200115	NbOx then Pt, repeat run for Exo 180920	AB	31.8	3.52	2.0	5.51	206.90
Exo 200218	NbOx then (Pt +NbOx) co-sputtering on top + Pt (B)	AB	29.3	4.49	1.8	4.70	206.79
Exo 200228	NbOx then (Pt + Nb) co-sputtering on top + Pt (A)	AB	34.1	6.37	1.9	4.08	206.98

- ORNL samples made in small batch of about 1 gram, in general, can control the oxidation state of Nb less than 5 (Nb 3d 5/2 peak closer to 206 eV than 207 eV).
- Exothermics samples (larger batch of 30 to 50 grams) have higher Nb oxidation state closer to 5 (Nb 3d 5/2 peak closer to 207 eV), but both are less than insulating Nb₂O₅. The difference in Nb valence state may affect the electronic conductivity of the deposited NbO_x.
- The Pt particle size is usually smaller (about 2 nm) than wet-chemical processed Umicore sample with similar composition (about 4 nm).

Accomplishments and Progress in Budget Period 3

1

5

RDE analysis indicates that Exo191112 shows high mass activity (1127 A/g-Pt), a promising candidate for incell test against milestones 10-15 in Q14 (work delayed due to coronavirus shutdown).

Nb in Exo 191112 is Nb₂O₅-like, but amorphous. Pt has very small crystal size. AB carbon mostly disordered. No Nb-Pt interactions observed as-prepared.

Significant Pt-Nb interactions seen at low potentials 0.1 V, due likely to the presence of O vacancies in NbO_x allowing for direct Pt-Nb interactions. Compressive strain not significant.

NbO_x-induced ORR activity improvement due to the NbO_x-induced electronic effect that suppresses the electron transfer from Pt to the ORR intermediates, weakening the Pt-O bonding energy.

Accomplishments and Progress in Budget Period 3

---- understanding the morphology of NbO_x and Pt in Exo 191112

Enlongated Pt rod and connected 2-D Pt network form on top of a homogeneously distributed amorphous NbO_x layer

Progress in Budget Period 3

IRD ready for in-cell tests against milestones 6, 11-15 after refurbishing test stations

 Northeastern observed Δμ & Nb/Pt relation, needs to clarify its relevance to MA

For hanoparticles with dispersion of $D(D = N_{suff} N_{total} decreasing with increasing$ particle size), assuming the Pt surface is fully covered by <math>O, $|\Delta \mu| = D$, and thus decreases with increasing particle size. If the surface O(H) coverage, which is directly related to the specific ORR activity, is

If the surface O(H) coverage, which is directly related to the specific ORR activity, is denoted as C_5 , then:

$$|\Delta \mu| = D \times C_{s} = \frac{N_{surf}}{N_{total}} \times C_{s}$$

Note Nsurf/Ntotal is not only related to particle size, but also particle shape.

• In general the $|\Delta\mu|$ increases with Nb content, indicating higher Pt utilization (or higher dispersion (D)), that is, more Pt is covered by OH_{ad} at elevated potentials.

 Ford & Exothermics preparing & testing 6 samples with mixed Pt+Nb or Pt+ NbOx intermediate layer in larger batch.

SAMPLE	bottom	in	termediate	mixture	top	
	NbOx (wt.%)	Pt (wt%)	Nb(wt.%	NbOx (wt.%)	Pt (wt.%)	
1	3	24	1		5	
2	3	22	3		5	
3	3	20	5		5	
4	3	24		1	5	
5	3	22		3	5	
6	3	20		5	5	

Select Reviewer Comments

- "The project team is working on simplifying a PVD process for improved reproducibility. However, to date, the PVD process appears to have issues with "line of sight," and getting uniform niobia does not appear to have happened. There are issues with reproducibility between the two systems in use; either this needs to be fixed, or one of the systems needs to be discontinued. At least from the discussion, it seems the tumbling of the carbon is not yet as reproducible as it needs to be. The team has shown various loadings of niobia on carbons; however, the weight percent of NbO_x has been relatively low—samples range from 0.5% to 13.3% (on slide 12), and slide 5 shows a 17.6 wt.% NbO_x sample. However, it seems unreasonable that a full coverage on the acetylene black can be obtained at any of these weight percentages. Noting that, of course NbO₂ is six times heavier than carbon, and these carbon materials are rather porous."
 - Response: The chamber size does affect the homogeneity of NbOx on nano-carbon as well the control of the valence state. The laboratory scale ORNL sputtering chamber can control the valence state of the Nb better, usually more toward 2, while the larger Exothermics chamber produce x close to 2.5. ORNL chamber is more suitable for composition & morphology engineering. Exothermics can reproduce reliably in term of composition and morphology, it is working on the powder stirring system to achieve homogeneity. On the other hand, the goal of the current project does not need to cover the nano-carbon with NbO_x, it needs the NbO_x to help the Pt forming 2-D connected network of several atomic layers to realize the improvement of MA through electronic interaction, strain control & crystal orientation. The physical pinning as well as the electronic interaction can also enhance its durability.
- More science is necessary; it is important to understand the NbO_x coverage and bonding on carbon and how this affects the carbon porosity. The team needs to understand the Pt bonding and how much is on NbO_x and on carbon, respectively. The Pt bonding interactions should be measured, and durability measurements should be taken (as planned in the future work).
- The following additions will help the project understand the quality of PVD-made catalysts better:
 - Performance stability under load cycling and start/stop cycling
 - \circ $\;$ Structural stability of the catalyst under the ink-making process
 - Understanding of the shelf life of PVD catalysts
- Work to narrow the particle size distribution could be beneficial.
- The use of state-of-the-art carbon supports is recommended.
 - Response: More In-situ XAS analysis will address the issues related to science at Northwestern University, at IRD the stability issues related to cell performance, and at Exothermics on particle size distribution control.

Future Work

- To the End of Budget Period 3
 - Continue XAS studies to understand source of activity for newer samples that show RDE mass activity > 0.44 A/mg_{Pt}
 - Work to characterize in-cell performance stability for PVD processed catalysts under cycling, as well as structural stability of the catalyst under ink-making
 - Modifying and refining synthesis procedures to achieve homogeneous
 Pt distribution in Exothermics processed large batch samples.
 - Durability: Run support corrosion AST, electrocatalyst cycle AST, for high performing materials.
 - Robustness tests
 - Continued measurements on all samples using TEM, XRF, XPS, XAS, RDE

Any proposed future work is subject to change based on funding levels

Summary

- 2nd Go/No-Go passed
 - Best mass activity & durability after electrocatalyst AST & substrate corrosion cycle has been achieved in cell testing at Ford with anode Pt loading of 0.025 mg_{Pt}/cm². EWII is working to confirm on 50 cm² cell at anode loading of 0.025 mg_{Pt}/cm².
- Milestones #1-5 and 7-8 have been met, 6 is being tested.
- High MA (>1000 A/g-Pt) catalyst powders have been prepared in large batch by Exothermics.
- Northeastern has further confirmed almost no Pt-Nb interactions (no alloying) in as prepared state, but a Pt-O interaction between the Pt and the O in NbO_x. Pt–Nb interaction could be induced by applied voltage, its origin and sample dependence being studied by in-situ XAS.
- TEM microstructural analysis (3-D Elemental Mapping) shows that the homogeneity of NbO_x deposited on top of the carbon powders greatly affect the Pt, which is adjacent to or on top of the pre-deposited NbO_x. However, the Pt is prone to clustering during large batch deposition and modification is being refined to control the catalyst morphology & Nb valence state during processing.
- IRD & Ford ready for in-cell testing against milestones 6 (IRD) & 10-15.

Acknowledgments

- Ford
 - Jun Yang
 - Chunmei Wang
 - Owen Lu
 - Chunchuan Xu
 - Mark Sulek
- Exothermics
 - Stephen DiPietro
- Oak Ridge National Lab
 - Gabriel Veith

- University of Michigan
 - Kai Sun
- Northeastern University
 - Sanjeev Mukerjee
 - Qingying Jia
 - Serge Pann
- IRD (EWii)
 - Madeleine Odgaard
 - Debbie Schlueter
- NREL
 - KC Neyerlin
 - Andrew Star