

## FY18 SBIR Phase II Release 1: Multi-Functional Catalyst Support

# pH Matter: Minette Ocampo, Paul Matter, Chris Holt Giner: Hui Xu, Magali Spinetta NREL: Guido Bender, Calita Quesada, Bryan Pivovar

pH Matter LLC Columbus, OH

#### Project ID: FC167

This presentation does not contain any proprietary, confidential, or otherwise restricted information



- Founded in 2010, located in Columbus, OH
- Mission: to develop and commercialize materialbased products for alternative energy applications.
- Expertise in:
  - Catalyst synthesis, development, and scale-up
  - Fuel Cell development
- Commercialization experience with catalysts, advanced materials, and electrochemical devices



### **Overview**

#### **Timeline and Budget**

- Project Start Date: 05-21-2018
- Project End Date: 05-20-2020
- Total Project Budget: \$ 1,000,000

#### Partners

- Giner Labs
- NREL
- Dr. Shyam Kocha



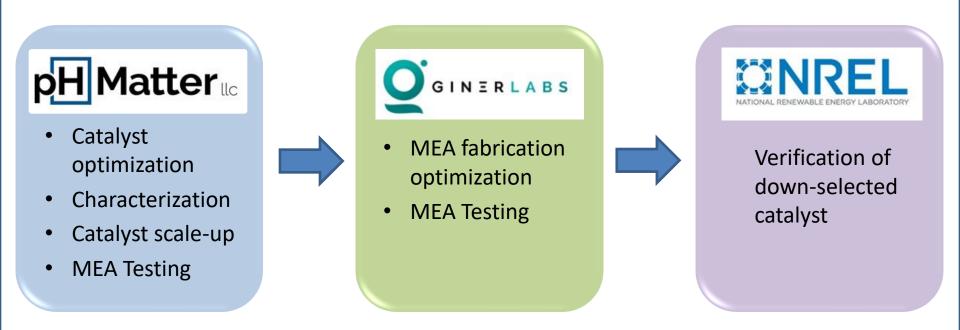
### **Barriers Addressed**

- Cost:
  - Enhancement of the Pt catalyst activity (and durability) to reduce its loading levels.
- Durability:
  - Optimize the interaction between the catalyst and the support material to improve chemical and thermal stability.
- Performance:
  - > Demonstrate improved performance in MEAs.



Objective: Develop a multi-functional carbon support (that is based on nitrogenand phosphorus-doped carbon nano-structures  $(CN_xP_y)$  and is optimized to perform better than conventional PEMFC pure carbon supports.

| Characteristic                               | Unit                               | DOE 2020 Target |  |
|----------------------------------------------|------------------------------------|-----------------|--|
| Platinum group metal Loading                 | mg <sub>PGM</sub> /cm <sup>2</sup> | 0.125           |  |
| Mass activity                                | A/mg <sub>PGM</sub> @ 0.9V         | 0.44            |  |
| Loss in initial catalytic activity           | % Mass activity loss               | <40             |  |
| Loss in performance at 0.8 A/cm <sup>2</sup> | mV                                 | <30             |  |
| Electrocatalyst support stability            | % Mass activity loss               | <40             |  |
| Loss in performance at 1.5 A/cm <sup>2</sup> | mV                                 | <30             |  |

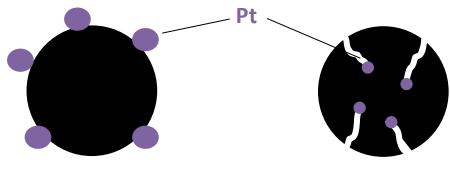

- Demonstrate DOE 2020 targets for catalyst durability with low PGM loadings
- Improved current density at low PGM loadings
- Show potential for high current density by tuning hydrophobicity





**Phase 1:** Demonstrated that Pt/MFCS-A catalysts can achieve target mass activity and durability

**Phase II:** Achieve high current density with durability at low PGM loading



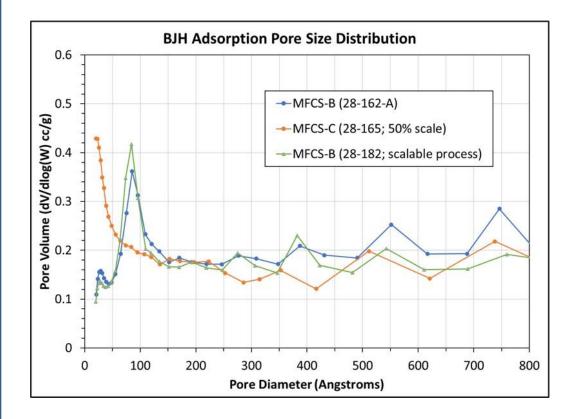



**Support Synthesis:** Down-selected in-house made supports with the following naming convention:

- MFCS-A: denotes Phase I baseline support, microporous throughout
- MFCS-B: denotes "accessible pore" support
- MFCS-C: denotes intermediate microporous support

#### **Conventional Catalysts**




Pt / Vulcan Carbon

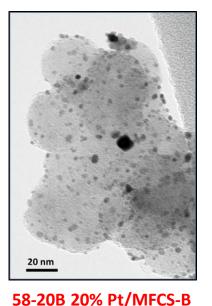
- Solid carbon
- High gas transport
- Poor durability

- Pt / Ketjenblack
- Micro-porous HSC
- Good durability
- Poor gas transport

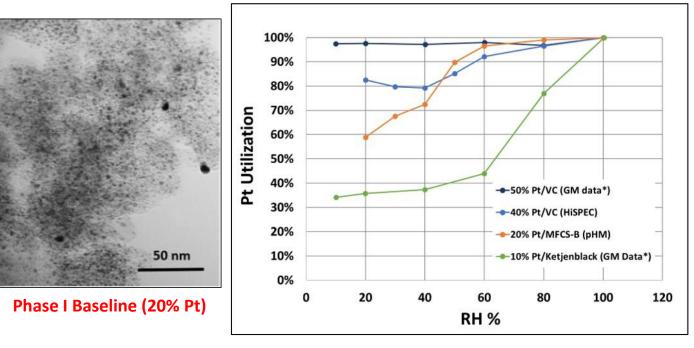


#### **Tuned porosity of supports**




- MFCS-B:
  - 100-250 m<sup>2</sup>/g
  - Tap density: ~0.36 g/cc

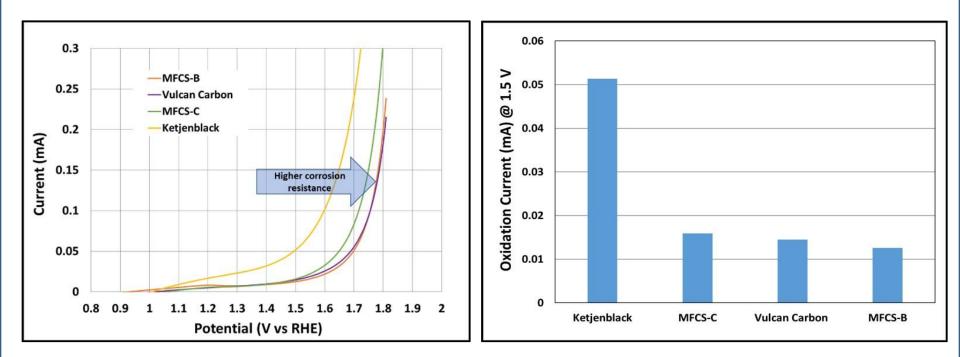
#### MFCS-C:


- 650-750 m<sup>2</sup>/g
- Tap density: ~0.18 g/cc
- Demonstrated 1 kg/hr process for both supports



#### **Catalyst Characterization**




(non-alloy)



- CO adsorption experiments performed in varying RH to quantify Pt location
- Platinum is more accessible for MFCS-B catalyst
- Higher mass transfer resistances for MFCS-A (Phase I baseline catalyst)

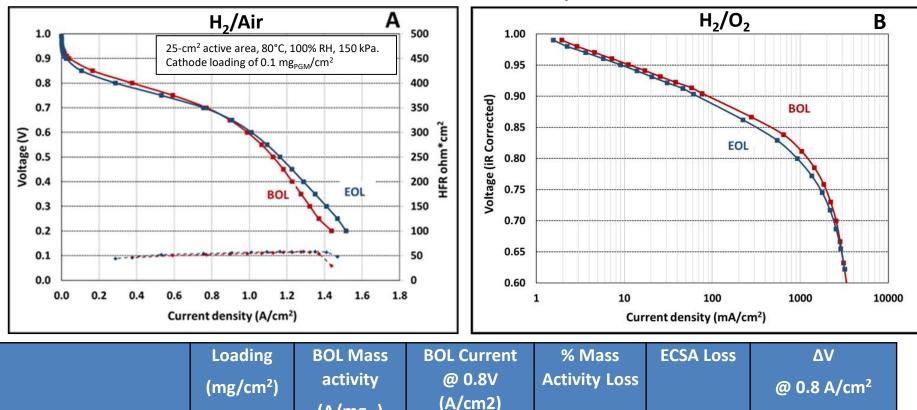


#### **Screening RDE corrosion test**



- Low surface area supports: MFCS B has better corrosion resistance than Vulcan Carbon
- High surface area supports: MFCS-C has better corrosion resistance than Ketjenblack




**DOE Targets** 

30% Pt-Co/ MFCS-C

### Accomplishments

### Achieved DOE Targets with 30% Pt-Co/MFCS-C

Performed 3 different tests with repeatable results



> 0.3

0.38

< 40%

27%

< 40%

17%

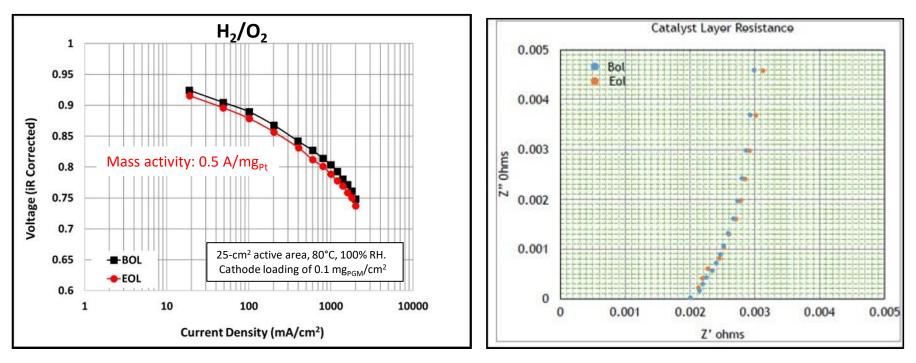
 $(A/mg_{Pt})$ 

> 0.44

0.77

0.125

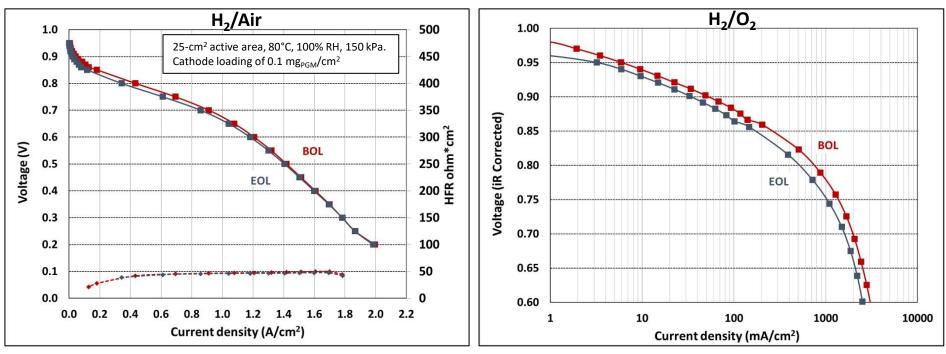
0.1


< 30 mV

0



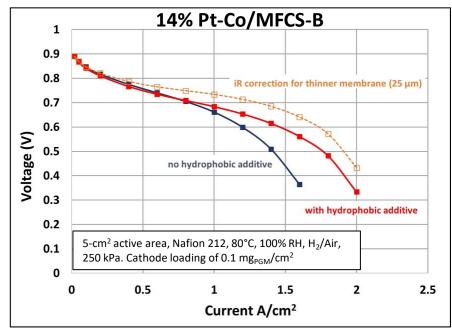



### 30% Pt-Co/MFCS-C Third-Party Validation



- Above target mass activity with no apparent degradation
- Difference in high current density observed due to MEA testing set-up, conditioning, or compression (catalyst kinetics and catalyst layer conductivity proved to be very durable)




### Achieved DOE Targets with 14% Pt-Co/MFCS-B



|                   | Loading<br>(mg/cm²) | BOL Mass<br>activity<br>(A/mg <sub>Pt</sub> ) | % Mass<br>Activity Loss | ECSA Loss | ΔV<br>@ 0.8 A/cm² |
|-------------------|---------------------|-----------------------------------------------|-------------------------|-----------|-------------------|
| DOE Targets       | 0.125               | > 0.44                                        | < 40%                   | < 40%     | < 30 mV           |
| 14% Pt-Co/ MFCS-B | 0.1                 | 0.53                                          | 34%                     | 0%        | < 10              |



#### Improved high-current density performance by tuning hydrophobicity



- Patent-pending process for modifying catalyst layer hydrophobicity
- Optimized hydrophobicity for highcurrent density performance and acceptable durability

|                           | Loading<br>(mg/cm²) | BOL Mass Activity<br>(A/mg <sub>Pt</sub> ) | % Mass Activity<br>Loss | ECSA Loss | ΔV @ 0.8 A/cm² |
|---------------------------|---------------------|--------------------------------------------|-------------------------|-----------|----------------|
| DOE 2020 Targets          | 0.125               | >0.44                                      | <40%                    | <40%      | <30 mV         |
| 14% Pt-Co/MFCS-B          | 0.1                 | 0.53                                       | 34%                     | -4%       | <10 mV         |
| 14% Pt-Co/MFCS-B + 10% HP | 0.1                 | 0.53                                       | 26%                     | 7%        | 23 mV          |
| 14% Pt-Co/MFCS-B + 20% HP | 0.1                 | 0.55                                       | 54%                     | 43%       | 50 mV          |



### **Reviewers' Comments**

### This project was not reviewed last year



### Collaborations

#### Giner Labs

- Industry Partner
- Subcontract
  - Ink development
  - MEA fabrication
  - MEA testing



#### NREL

- Federal Lab Partner
- Independent validation of MEAs under industry standard procedures

### Ballard

- No-cost partner
- Provide testing and feedback on MEA performance

#### Dr. Shyam Kocha

Consultant



- Further improve high-current density performance at low PGM loading
- Demonstrate improved corrosion resistance of engineered supports versus commercial catalysts (in MEA)
- Perform third-party tests to confirm catalyst performance



### **Future Work**

### Optimize for higher MEA performance

- Hydrophobicity of electrode
- I:C ratio
- Testing at 250 kPa at lower RH
- Characterization experiments
  - 3D imaging
  - MEA TEM imaging
- Third-party validation to demonstrate DOE targets
- Partnerships with MEA manufacturers
- Demonstrate heavy duty application targets as well



- Licensed carbon composition from the Ohio State University
- Pending patents on the multi-functional carbon support
- Giner is providing expertise and know-how with state-of-the-art MEA synthesis and ionomers



- Demonstrated improved performance from the Phase I baseline catalyst
- Demonstrated scalable synthesis for both MFCS-B and MFCS-C supports
- Optimized catalyst synthesis process and confirmed repeatability and scalability of down-selected process
- Demonstrated DOE targets for BOL and EOL performance for both MFCS-B and MFCS-C catalysts
- Demonstrated DOE targets for BOL and EOL performance with the addition of the hydrophobic additive to improve high-current density performance