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Objectives: Development of PGM-free ORR catalysts with high performance
and durability in PEMFCs.

» Development of M,-N-C catalysts featured with multiple metal centers (MMCs).

» Synthesis of M,-N-C catalysts via surface deposition methods to bypass the
necessity of pyrolysis.

Relevance: our approaches move beyond the M-N-C catalysts featured with
single metal sites and traditional synthesis routes pyrolyzing the mixture of metal,
N, and C precursors. The new catalysts may address the limited activity, durability,
and active site density of M-N-C catalysts and meet the DOE targets.

Targets:
« 0.035A/cm?at0.9 VinaH,-O, PEMFC (1.0 bar partial pressure, 80°C)

» Loss in activity < 40% after 30,000 square wave cycles with steps between 0.6
V(3s)and 0.95V (3 s).

« Power density of 0.5 W/cm? in a H,-Air PEMFC with a MEA size = 50 cm?
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Approach and Targets .»J

» Synthesis
1. lonothermal Carbonization (abandoned)
2. Chemical vapor deposition (CVD)
3. lon Beam-Assisted Deposition (IBAD)
4. Flash pyrolysis

» Characterizations
Spectroscopy: in situ XAS, Mossbauer, XPS, NMR, XRD
Microscopy: SEM, HAADF-STEM, HRTEM

» MEA fabrication
electrospinning, IBAD

» Mass transport modeling

» Milestones
1. 0.025 A/lcm? at 0.90 V in a H,/O, PEMFC (Period 1 Go/No-Go)
2. Loss in activity < 40% after 30,000 square wave cycles
3. Power density of 0.5 W/cm? in a H,/Air PEMFC
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lonothermal Carbonlzatlon synthe5|s (ceased)

Accomplishments and Progress
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Combined characterizations show the presence of electrochemically active MMC

: . o 5
sites in the M,-N-C catalysts, but poor ORR activities in RDEs.
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Synthesis of microporous N-C substrate without iron
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Highly porous N-doped
carbon substrate with
abundant micropores and
enriched pyrindic N content
was produced for in-
temperature XAS studies
and for deposition methods.
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Highly microporous and well-defined N-C substrate was achieved.
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In-temperature XAS characterizations
FeCl,-4H,0 + N-C FeCl,-4H,0 + SiO, lia et al., JACS, 2019
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In-temperature XAS reveals the stepwise formation of Fe-N, sites during pyrolysis. 7
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Non-contact pyrolysis
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Synthesis of Fe-N-C catalysts with Fe-N, sites via non-contact pyrolysis is demonstrated. 8
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N-C substrate for chemical vapor deposition (CVD)
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Make new N-C substrate from in-house ZIF-8 with optimized particle size. 9
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Chemical vapor deposition (CVD)
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CVD method is demonstrated by using anhydrous FeCl,, taking Voltage (V)

advantage of its low evaporation temperature. It holds the potential to
make Fe,-N,-C sites signified by the gaseous Fe,Clg at 300-600 °C.

Among a wide temperature range 750 °C
gives the best ORR activity in a RDE.

CVD method produces highly active Fe-N-C catalysts for the ORR. 10
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CVD: ex situ characterizations
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Multiple ex situ characterizations converge to
the conclusion that the FeNC-CVD-750
contains predominately (~90%) Fe(lll)-N,-O,
(D1) species and is absent of Fe(Il)-N, (D2).

All Fe(I)-N, sites in FeNC-CVD-750 located on surface in the form of Fe(ll1)-N,—O,. 11
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CVD: In situ XAS characterizations
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Nearly 100% utilization of Fe-N, sites (1.8 wt- %) is identified in situ. 12
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CVD: ORR activity assessments
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FeNC-CVD-750 delivers 0.033 A-cm~ at 0.9 V in H,-O, PEMFCs. 13
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CVD: PEMFC durability
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The current density @ 0.8 V degrades ~ 37% at the third scan.
The current density @ 0.9 V degrades ~ 45% at the third scan.
Major loss occurs upon the first scan.

FeNC-CVD-750 is not durable in H,-O, PEMFCs.
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IBAD: RT-deposition of Fe metal onto Co-MOF substrate
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Deposition of Fe metal onto Co-MOF substrate by IBAD at RT is achieved.
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Non-PGM MEA Kinetics & Microscale modeling

Kinetics modeling: Microscale Agglomerate Studies .
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Discreet catalyst particles result in local losses and lower catalyst utilization.
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MEA level macro-scale modeling
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2-D cross section

2-D MEA cross-section model

* Incorporated physics:
% Non-isothermal, two-phase model
% Multicomponent diffusion
% Electronic and protonic conduction

% BV kinetics in anode, Dual slope
Tafel in Cathode

% Agglomerate model uses micro-
scale simulated effectiveness factor
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Experimental validation

® The model can predict the cell performance for various
O, concentrations

¢ Dual slope kinetics predicts kinetics region accurately

® Transport limited behavior observed in air-based
cathode due to lower O, concentrations

Developed predictive modeling capabilities to estimate effect of oxygen transport. 17
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Mass transport modeling
Voltage breakdown analysis

* Significant cathode kinetics loss due to slow ORR kinetics 1.25

» Significant transport losses in cathode due to high thickness
and low porosity
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Detailed pol-curve breakdown shows limiting factors, e.g., low cCL utilization. 13
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Mass transport modeling
Voltage breakdown analysis
Cell voltage (V) breakdown (Air, 80C, 100 %RH)
* Saturated conditions (100 % RH) 1.25
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Response to Previous Year Reviewers’ Comments

Several comments on the performance of the catalysts. “No MEA data were presented that would support the main expectations of this
project. For that reason, all claims from the approach fall into the category of predictions and are speculative. The Pls should be
acknowledged for the materials that were made and for the fact that structural characterization is consistent with what was proposed. It is not
clear why these systems should be more active and durable, as well as what the foundation is for such claims.” and “MEA testing is required”

» MEA evaluations in H,-O, PEMFCs were conducted on the FeNC-CVD-750 catalyst, and the activity exceeded 15t year Go/No-go decision
point. We are still in the process of optimizing electrodes and PEMFC operation including using differential cells for the PEMFC testing.
We will also work heavily on the durability testing in PEMFCs. By the end of the project, MEA-based activity and durability will be reported.

Several concerns on the activity, durability, and site density of the MMN—C catalysts such as “the potential impact would be significant
if it could be demonstrated that a multi-metal active site was more active and could be reliably synthesized at high density”.

> Although Fe-N-C with MMC sites was synthesized by ionothermal carbonization synthesis (slide 5), their ORR activities were not good in
RDEs, and we could not improve the activities to the state-of-the-art level. We speculate that it is because either the site density is too low
and/or the produced Fe,-N, sites are not inherently active. We decided to cease this method and focused on the CVD method because
when trying to synthesize MMC sites via deposition methods, we found that the CVD method can produce highly active Fe-N-C catalysts
with dense Fe-N, sites located exclusively on surface. Meanwhile, synthesis of MMC sites have been undergone using CVD, flash
pyrolysis, and IBAD methods. One patrticular effort is to create N-C substrates with multiple vacancies that can host the MMC sites.

Several concerns on the collaborations “For example, it is unclear who is doing the MEA integration work, how the feedback loop from
the testing is given, or how the preliminary evaluation is aligned with subsequent diagnostics.” and “The value of the mass transport
modeling will be apparent only if the catalyst activity becomes sufficient; otherwise, there is too much uncertainty in future catalyst
morphologies that will meet activity targets”

» Although this project involves only one prime (NEU) and one sub (LBNL), productive and extensive collaborations have been undergone
within these two parties, EMN Consortium Members (APS, ORNL), and unfunded partners (Giner Inc). Collaborations with APS on the in-
temperature XAS revealed the Fe-N, site evolution pathway and led to the CVD method. Dense Fe-N, sites were directly visualized by
STEM and EELS at ORNL. By far the PEMFC assessments reported were conducted by NEU’s local partner Giner; meanwhile NEU has
been learning and optimizing PEMFC testing systems and will work on the durability assessment in PEMFCs. The mass transport
modeling by LBNL provided invaluable insights since NEU had a catalyst that is relatively well-defined (all Fe-N, sites on surface) and
exhibits exceptional ORR activity in both RDE and PEMFCs for the modeling. NEU is trying to improve the catalyst from the mass transport
point of view, and then on durability as well. IBAD involves collaboration between NEU and Thin-film Research inc. We will keep
collaborating with EMN Consortium Members for advanced catalyst, electrode, and MEA characterizations. 20
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Northeastern University (University Prime)
Qingying Jia (PI), Sanjeev Mukerjee (Co-Pl), Lynne LaRochelle Richard, Li Jiao, Qiang Sun

Catalyst design and characterizations, in situ XAS, mechanism and degradation studies, MEA
fabrication and testing, management and coordination.

Lawrence Berkeley National Laboratory (National lab sub)
Adam Weber (Co-PI), Lalit Pant

Mass transport modeling

Argonne National Laboratory (EMN Consortium Member)

Argonne Deborah J. Myers, Evan Wegener, A. Jeremy Kropf
R In-temperature XAS
Oak Ridge National Laboratory (EMN Consortium Member)
%gﬁﬁﬂggg Dave Cullen, Karren More

STEM, EELS

Giner. Inc. (Industry unfunded partner)
@ Hui Xu, Fan Yang, Sichen Zhong, Thomas Stracensky
PEMFC performance and durability evaluations

Institut Charles Gerhardt Montpellier (University unfunded partner)

Frederic Jaouen, Jingkun Li, Moulay Tahar Sougrati

Mossbauer, ex situ XAS

Thin-films Research, Inc (Industry sub-contractor)
T.R. Raghunath
IBAD
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Remaining Challenges and Barriers ‘\" Pl e

« Improve the activity of Fe-N-C catalysts to reach 0.035 A-cm=2 and then 0.044 A-cm
at 0.9 Vin H,-O, PEMFCs.

« Improve the powder density of Fe-N-C catalysts to 0.5 W-cm2 in a H,-Air PEMFC.

« Improve the durability of Fe-N-C catalysts to < 50% activity loss upon AST.
 Produce MMC sites with high ORR activities.

« Characterizations and ldentification of MMC sites.

 Validate IBAD for the synthesis of Fe,-N-C catalysts at room temperature.

* Validate flash pyrolysis for the synthesis of Fe,-N-C catalysts.

* Understand the degradation modes of M,,-N-C catalysts and electrodes in PEMFCs.
« Scale-up of Fe-N-C catalysts made by CVD.

22
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Optimize the CVD method to further improve the activity and durability of Fe-N-C catalysts.

1. site densification (N enrichment in the N-C substrate; tune Zn-N, content).
2. improve MOF-derived N-C substrate for better mass transport and durability.
3. improve the understanding of the Fe-N4 formation mechanism in the CVD method.

Implement IBAD to:

1. produce M,-N-C catalysts with MMC sites.
2. realize room temperature synthesis of M,,-N-C catalysts.
3. densify M-N, and/or MMC sites.

Implement flash pyrolysis to improve the CVD method and to synthesize MMC sites.

Identification of MMC sites via STEM and in situ XAS.
Improve the understandings of degradation of Fe-N-C catalysts in PEMFCs via XAS studies.

Improve the durability of Fe,-N-C catalysts by:

1. adding protective layers

2. incorporating sacrificing oxides in N-C substrates.

3. implementing strategies based on the new understanding of Fe-N-C degradation modes.

Conduct IBAD and electrospinning for MEA fabrication.

Conduct mass transport modeling to understand the bases of the activity and durability of
synthesized catalysts.

Any proposed future work is subject to change based on funding levels. 23




Summary

Objective:

Relevance:

Approach:

Accomplishments:

Collaboration:

Future work:

}, Northeastern University

Center for Renewable Energy Technology

Produce PGM-free catalysts with high ORR activity and durability in PEMFCs.

Our approaches move beyond traditional M-N-C catalysts and synthesis routes.
The new catalysts and synthesis methods may address the limited activity, durability,
and active site density of M,,-N-C catalysts and meet the DOE targets.

M ,-N-C catalysts with MMC sites are targeted candidates to improve the ORR

activity and durability of M-N-C catalysts. lonothermal carbonization synthesis, non-contact
pyrolysis, CVD, IBAD, and flash pyrolysis have been conducted for catalyst synthesis. Advanced
characterizations are implemented to understand the catalyst formation mechanisms,

ORR mechanisms, degradation mechanisms. Mass transport modeling has been implemented to
understand the PEMFC performance of synthesized catalysts.

1. Fe-N, formation pathway during pyrolysis was revealed by in-temperature XAS.
2. CVD method was validated producing highly active Fe-N-C catalysts with all
Fe-N, sites located on surface with 100% utilization.
3. The FeNC-CVD-750 demonstrated a current density of 0.033 A-cm=2at 0.9 V in H,-O, PEMFCs.
4. Metal deposition onto powder substrates was achieved by engineering IBAD.

Strong teams and effective collaborations within university (NEU), national labs (LBNL, ANL),
local industry partner (Giner, Thin-Films Research), and international partner (CNRs).

1. improve the CVD method and the flash pyrolysis.
2. implement the IBAD to synthesize M,-N-C catalysts at room temperature.
3. improve the understanding of degradation of M, -N-C catalysts and their durability. 24
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Technical Back-Up Slides
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Literature reports of the presence of MMC sites

* |deal
== Fe,N;
= FE,N5(OH)

Reaction Coordinate

Holby, E. F.; Taylor, C. D. Sci. Rep. 2015, 5.

sites.

Desired ORR kinetics of MMC sites by DFT

0.4 0.6
E/Vvs. RHE

27
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In-temperature XAS on FeCl,-4H,0 + N-C
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FeAc, + ZIF-8 + Phen FeCl,-4H,0 + SiO,
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Vertical CVD method (ANL)

HT Parallel Reactor System (T1224, Avantium)

Block | Block Il

00 OO0
0| |00

Block II Block IV

00 OO0
00| 0600

Each block can be temperature-controlled independently

Argonne’

NATIONAL LABORATORY

Deborah J. Myers,
Magali S, Ferrandon
Jae Hyung Park

10 mg
FeCl,

10 mg N-C——

Inert (Silica, L=8
cm)

Frit(20 pm)—— [

Gas In

Quartz reactor (L=30mm,
0OD=2.6, ID=2.0 mm)

I I Distance between FeCl,
and N-C can be varied
using x frits

Gas Out

Current density (A cm”)

Current density (A cm'z)

0

0.0 0.1 02 03 04 05 0.6 07 08 09
Voltage (V)

—— NC-20nm-ANL-650
—e— NC-20nm-ANL-700
—e— NC-20nm-ANL-750
[ —e— NC-20nm-ANL-800

0.0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 09 1.0
Voltage (V)

CVD was also demonstrated by another group using another system (parallel reactor).
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Flash pyrolysis

Cl Cl Cl Cl
FI \F \\\\\\"Cl"'u/_,«”':e/ FI
e _— > e —_— e
clI” cl e o \CI cl” cl
<300 °C 300-600 °C > 600 °C
Solid, liquid Gas phase dimer Gas phase

Synthesis of M,-N-C from pre-existing MMC precursors via flash pyrolysis by a slide furnace that
allows for pyrolysis at a constant temperature with controllable time.
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Engineering IBAD on powder substrates

Thin-Films Research, Inc.
270 Littleton Road
Westford MA 01886

Tel: 978-692-9530 Fax: 978-692-9531

www.thinfilmsresearch.com

Custom powder chamber
and rotation apparatus

Target

e-beane
evaporator

Optimized Co/N-doped precursor developed
9 g of optimized precursor produced for IBAD trials

IBAD contract engineering partner identified and
hired: Thin-Films Research, Inc, Westford, MA

Tooling in late stage development and small-scale
trials

Process scalable to 5 g batches with current tool set

High
VAU
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