High Performance non-PGM Transition Metal Oxide ORR Catalysts of PEMFCs

P.I.: Timothy C. Davenport Raytheon Technologies

ElectroCat Consortia Project Project ID: FC306 DE-EE0008420

2020 Hydrogen and Fuel Cells Annual Merit Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information. This presentation does not contain technical data subject to the EAR or the ITAR.

Overview

<u>Timeline</u>

Project Start: March 2019

- Project BP1: March 2019 August 2020
- Project End: August 2021*
- Project continuation and direction determined annually by DOE

Barriers Addressed

Low performance for PGM-free
 oxygen reduction reaction catalysts
 for PEMFCs

Target I.D. #	Characteristic	Units	2020 Targets
FC-4	Loss in initial catalytic activity	% mass loss	< 40
FC-5	Loss in performance at 0.8 A cm ⁻²	mV	< 30
FC-8	PGM-free catalyst activity	A cm ⁻² at 900 mV _{iR-free}	> 0.044

<u>Budget</u>

Total Project Budget: \$1,250K

- Federal Share \$1,000K
- Cost Share (20%) \$250K
- Total DOE Funds Spent*: \$473K
- * as of 5/27/2020

Funded Partners

Massachusetts Institute of Technology

Relevance

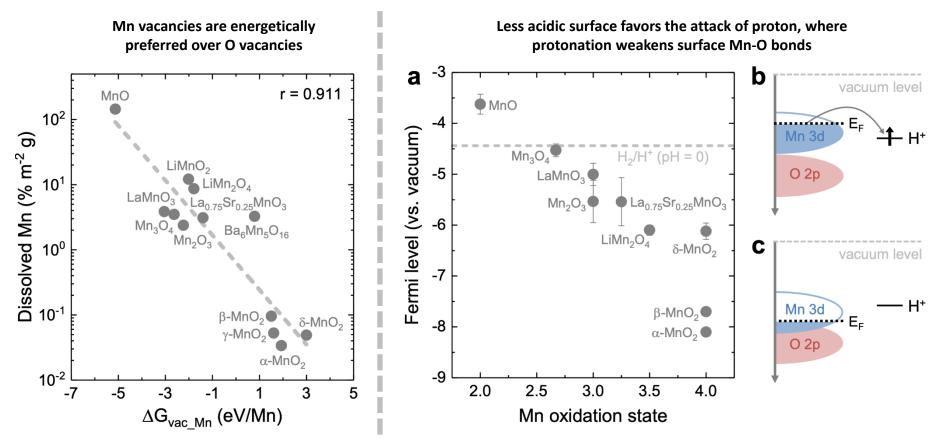
Objective: Develop acid-stable non-PGM metal oxides and optimize oxide catalytic activity for ORR reactivity.

	Barrier	Approach	2020 Impact
A	Durability	Focusing on improving the acid stability of novel materials will lead to higher durability materials for PEMFCs	 Acid-stability descriptors developed based on manganese oxides Family of acid-stable antimony- based oxides developed
В	Cost	Development of non-PGM electrocatalysts is a key approach to reducing PEMFC cost	 Project focuses on Mn-based oxide materials that do not contain PGMs
С	Performance	Optimize the catalytic activity by the doping of acid-stable oxides with multiple metal cations to fill multiple roles including stability, catalytic activity, and electronic conductivity	 Evaluated electrocatalytic activity of Mn-based oxides

Approach

Develop acid-stable non-PGM metal oxides

- Identify descriptors for acid-stability to guide prediction of acid stable oxides
- DFT calculation of phase stability of doped metal oxides of interest as potential acid stable oxides

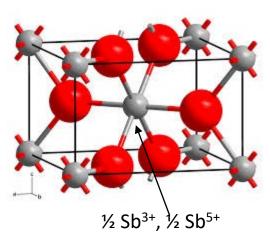

Optimize oxide catalytic activity for ORR

- Electrochemical characterization to determine intrinsic activity of novel materials
- Optimize material synthesis for high surface area
- Optimize catalyst layer composition with high-throughput ink formulations

Project Milestones	Original Planned	Revised Planned	Percent Complete	Notes
Subcontracts completed	5/31/2019		100%	Completed
Evaluation of Acid Stability of A _x MnO ₂	5/31/2019		100%	No doped MnO _x have been found to be acid stable under ORR conditions
Evaluation of Intrinsic ORR Activity of Acid-Stable A _x MnO ₂	8/31/2019		100%	Evaluated activity of most acid-stable MnO _x systems – proceeding to 2 nd generation oxides
Demonstrate intrinsic ORR activity ≥ 0.5 µA-cm ⁻² _{oxide} at 0.9 V (iR-free) with acid stable oxide	8/31/2019	8/31/20	50%	Activity observed, but not with demonstrated acid stability
Optimize Catalyst Layer Composition with best catalyst developed	11/30/2019	8/31/20	0%	
Demonstrate intrinsic ORR activity ≥ 4.4 µA-cm ⁻² _{oxide} at 0.9 V (iR-free) with an acid stable oxide	11/30/2019	8/31/20	0	
Demonstrate MEA with performance of 0.025 A-cm ⁻² at 0.9 V (iR-free) under 1 atm O ₂ and 80 $^\circ C$	2/29/2020	8/31/20	0%	Go/No-Go

Progress: Acid Stability Descriptors

Acid stability descriptor developed for manganese oxides, indicating high stability of high oxidation state manganese oxides.

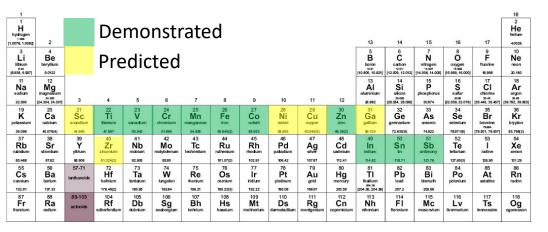

Identified rutile phase as a target for Mn-based acid stable oxides (β -MnO₂).

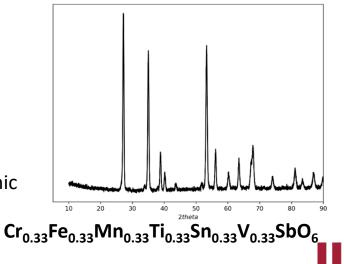
Raytheon Technologies

Approved for Public Release

Progress: Acid Stabile Rutile Structures

Substitutional variation:

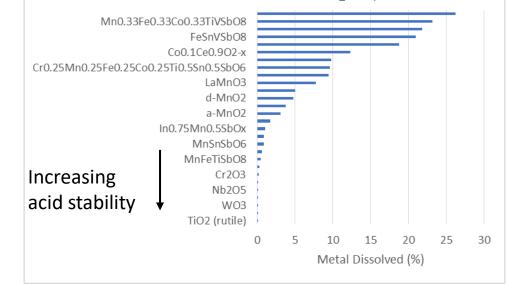

- Sb^{III} can be substituted with 2+ and 3+ ions
- Sb^v can be substituted with 5+ ions
- Miscible with other rutile materials (4+ ions)


High entropy oxides:

- Structure can stabilize disordering of up to 7 elements (demonstrated) at once
- Structure can accommodate wide range of ionic radii (68 – 94 pm)

Overview:

 Sb_2O_4 is a mixed valent (Sb^{III} , Sb^{V}) oxide Sb^{III} and Sb^{V} are randomly disordered on the single crystallographic metal ion site (4+ site charge)



Progress: Acid Stability Rutile Structures

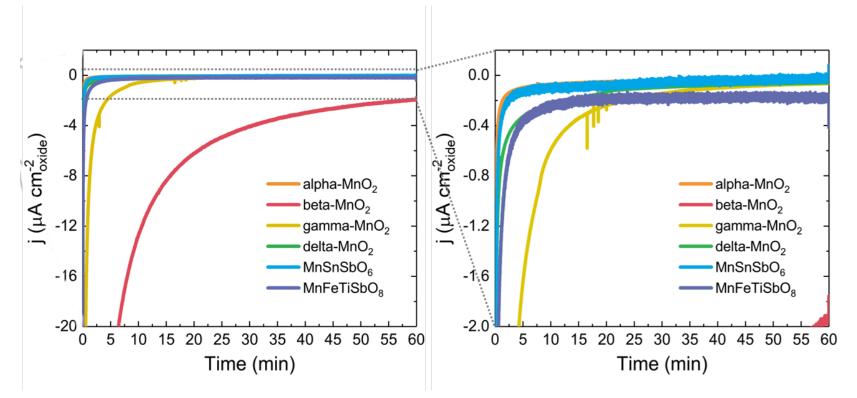
Acid Stability:

- Rutile antimony oxides stabilize 3+ ions towards acidic attack
- Stabilized ions include Mn³⁺, Fe³⁺, In³⁺
- Other stable elements can be added (Ti⁴⁺, Cr³⁺, Sn⁴⁺)

Dissolution in 0.5 M H₂SO₄

Electronic Conductivity:

 Conductivity can be enhanced by addition of In³⁺ or Zn²⁺


	Conductivity (mS-cm ⁻¹)
InSbO ₄	220
In _{0.75} Mn _{0.5} SbO _x	230
MnO ₂	0.005

Challenges:

- Incorporation of Mn⁴⁺ preferred but synthesis is challenging due to reduction
- Current Sb-based materials have low ORR activity

Progress: Electrochemical Activity

Activity of β -MnO₂ is significant over a 1-hour hold at 0.9 V (~2 μ A-cm⁻² vs. initial target 0.5 μ A-cm⁻², final target 4.4 μ A-cm⁻²)

Further durability not yet demonstrated

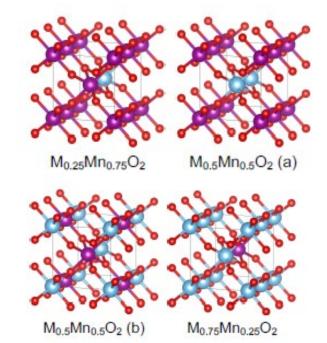
Raytheon Technologies

Mn-doped Sb-oxides are acid stable, but have low electrochemical activity to date. Increasing Mn content (doped Mn oxide) is expected to demonstrate higher electrocatalytic activity

Approved for Public Release

Progress: Computed Doped Mn Oxides

Materials Computed:


B-MnO₂ with the following substituents: Active metals: Co, Fe, Ni Stabilization: Ti, Cr, Sb, Sn, W, Nb, Cd, Ga

Conductivity: Zn, In

Predicted stable materials:

Likely $(\Delta \phi_{hull} < 0.1 \text{ eV/atom})$: $Sb_x Mn_{1-x}O_2 (x = 0.25, 0.5)$ $Nb_x Mn_{1-x}O_2 (x = 0.25, 0.5)$ Possible ($0.1 < \Delta \phi_{hull} < 0.2 \text{ eV/atom}$): $Ti_x Mn_{1-x}O_2 (x = 0.25, 0.5, 0.75)$ $Fe_x Mn_{1-x}O_2 (x = 0.25, 0.5)$

Structures Considered:

 $Sn_xMn_{1-x}O_2 (x = 0.25, 0.5, 0.75)$ $W_xMn_{1-x}O_2 (x = 0.25, 0.5)$ $Co_xMn_{1-x}O_2 (x = 0.25, 0.75)$

DFT stability calculations for a range of ternary manganese oxides were performed to determine further acid stable synthesis targets.

Responses to Reviewer's Comments

"The project offers an alternative to the highly unstable metal nitrogen-doped carbon catalyst. If successful, this project might have significant impact on DOE technical targets."

"The Go/No-go should include simultaneously demonstrating voltage performance and acid stability with the same formulation."

The project team agrees with this assessment.

"There is a lack of evidence that complex oxides can be active, stable, and conductive under the relevant conditions for PEMFCs"

 The project team has identified oxides that are both stable and conductive under relevant conditions and are working to increase the activity.

Collaborations

First principles design to membrane-electrode assembly

Subcontractor, University

PI: Prof. Yang Shao-Horn

- Oxide optimization for acid stability
- ORR Electrocatalytic performance optimization of acid-stable oxides

Prime, Industry **Raytheon** Technologies

PI: Tim Davenport

- Catalyst Layer Optimization
- MEA Fabrication
- MEA Performance and Durability Testing

Electrocat Consortium:

Collaborator: Dr. Deborah Myers

High-throughput synthesis of doped oxides

Challenges and Barriers

- Challenge: Identifying an oxide with sufficient electrocatalytic activity to meet the project goals has not yet been achieved.
 Successful identification of such a material is necessary to meet the Go/No-go milestone.
- Planned Resolution: The project team obtained a no-cost extension to meet the electrocatalyst targets.
- Challenge: Integration of the electrocatalyst material into a membrane-electrode assembly has not begun.
- Planned Resolution: The project team will leverage the highthroughput capabilities of the Electrocat consortium to optimize the MEA fabrication.

Proposed Future Work

Project Milestones	Schedule
Demonstrate intrinsic ORR activity $\ge 4.4 \ \mu\text{A-cm}^{-2}_{\text{oxide}}$ at 0.9 V (iR-free) with an acid stable oxide	8/31/2020
Demonstrate MEA with performance of 0.025 A-cm ⁻² at 0.9 V (iR-free) under 1 atm O ₂ and 80 °C	8/31/20
Demonstrate MEA with PGM-free ORR catalyst that meets targets FC-4 and FC-5 under "Electrocatalyst Cycle" AST protocol.	2/28/21
Demonstrate MEA with PGM-free ORR catalyst that meets targets FC-6 and FC-7 under "Catalyst Support Cycle" AST protocol.	5/31/21

- High-throughput techniques will be leveraged to synthesize targeted acid-stable oxide materials
- As identification of a highly active electrocatalyst is critical, alternative electrocatalyst materials will be considered in place of an oxide.

Any proposed future work is subject to change based on funding levels

Summary

- Discovery of acid-stable metal oxides with catalytically active elements has the potential for breakthrough ORR electrocatalytic performance
- Descriptors for acid stability have been developed to aid acid-stable oxide electrocatalyst identification
- A family of antimony-based rutile oxides has been developed exhibiting acid-stability and a wide composition space. Conductive oxide materials were identified.

Go/No-Go Technical Target:

Demonstrate MEA with performance of 0.025 A-cm⁻² at 0.9 V under 1 atm O_2 and 80 °C

MYRD&D Targets Addressed:

Target	Characteristic	Units	2020
I.D. #			Targets
FC-4	Loss in initial catalytic activity	% mass loss	< 40
FC-5	Loss in performance at 0.8 A cm ⁻²	mV	< 30
FC-8	PGM-free catalyst activity	A cm ⁻² at 900	> 0.044
		mV _{iR-free}	

Develop durable MEAs with PGM-free metal oxide ORR catalysts

Acknowledgements

Jiayu Peng, MIT Dr. Livia Giordano, MIT Prof. Yang Shao-Horn, MIT

Donna Ho, DOE John Kopasz, ANL

Simon Thompson, DOE Dimitrios Papageorgopoulos, DOE

Electrocat Consortium

Mii

Approved for Public Release