

Cyclic Olefin Copolymer based Alkaline Exchange Polymers and Reinforced Membranes

Chulsung Bae

May 19, 2020

Rensselaer Polytechnic Institute

Project ID: FC307

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: Jan 1, 2019
- Project End Date : Jun 30, 2021
- Percent complete: 35%

Barriers

- C. Performance
- B. Cost
- A. Durability

Budget

Partners

- Total Project Budget: \$1,275,000
 - Total Federal Share: \$ 700,000
 - (+ \$300k for LANL)
 - Total Cost Share: \$ 250,000
 - Total DOE Funds Spent*: \$172,495
 - Total Cost Share Spent*: \$35,971

* As of 03/30/2020

Co-PI, Yu Seung Kim

Los Alamos National Laboratory

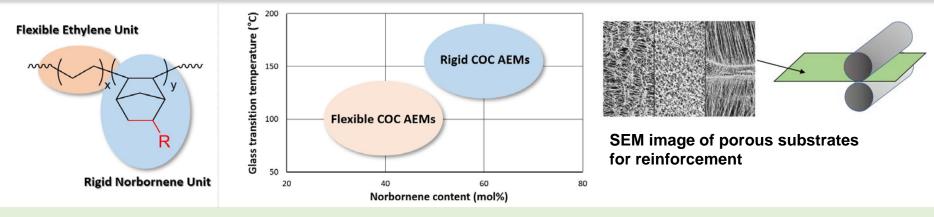
- Ionomer-catalyst interface study
- MEA fabrication and fuel cell performance test

Xergy Inc. (RPI took over tasks since 01/2020)

• Reinforced composite membrane fabrication

and characterization

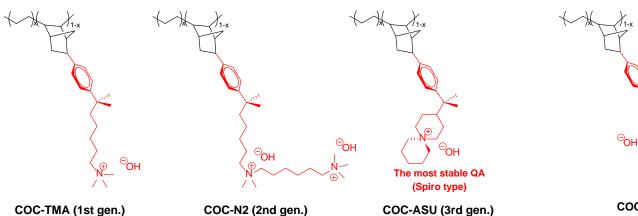
Relevance


Objective

 Development of high-performance, low-cost AEMs by synthesis of a series of QAfunctionalized cyclic olefin copolymers and impregnation using reinforcement technology.

Technical Targets

Technical Metrics	the-state-of-the-art AEM (m-TPN1)	BP1 Target	Ultimate Target	
Hydroxide conductivity (in-plane, 80 °C)	112 mS/cm	60 mS/cm	120 mS/cm	
Alkaline stability (1M NaOH, 95 °C)	720 h, IEC drop <2%	500 h, <3%	1000 h, <3%	
Tensile strength at break (50 °C, 50% RH)	29 MPa	25 MPa	50 MPa	
Elongation at break (50 °C, 50% RH)	36%	35%	70%	
Swelling ratio (OH ⁻ form, 25 °C)	16%	20%	10%	
Area specific resistance (80 °C; in fuel cell)	$0.18 \ \Omega \ cm^2$	$0.10 \ \Omega \ cm^2$	$0.05 \ \Omega \ cm^2$	

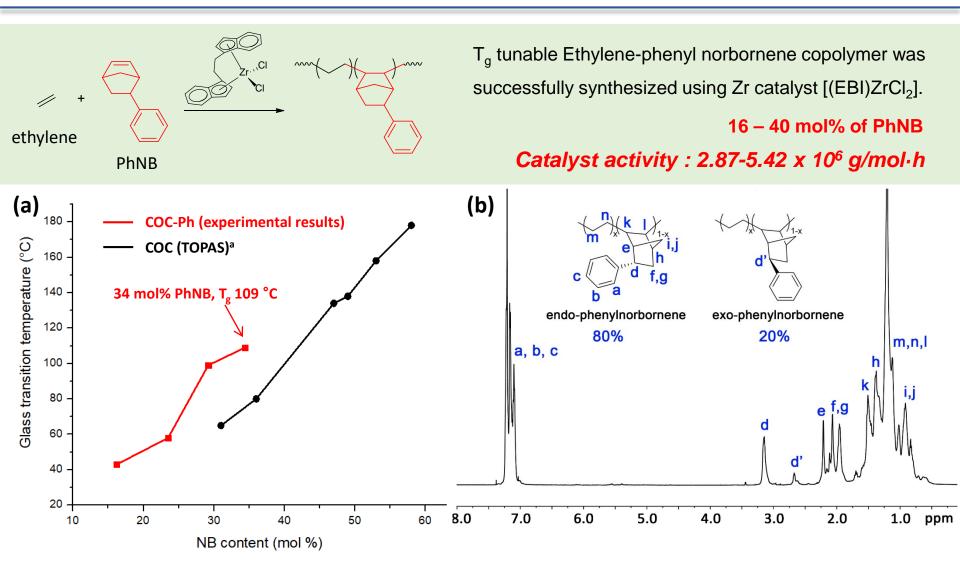

Approach

- Low cost monomers and polymers
- No heteroatom (O or N) in the backbone → High alkaline stability
- Excellent mechanical properties and dimensional stability due to high molecular weight
- Tunable Rigidity by varying the ratio of ethylene and norbornene/cyclic olefins in the backbone
- Pore-filling reinforcement for enhancing durability and extending lifetime of MEAs

COC AEMs in the proposal

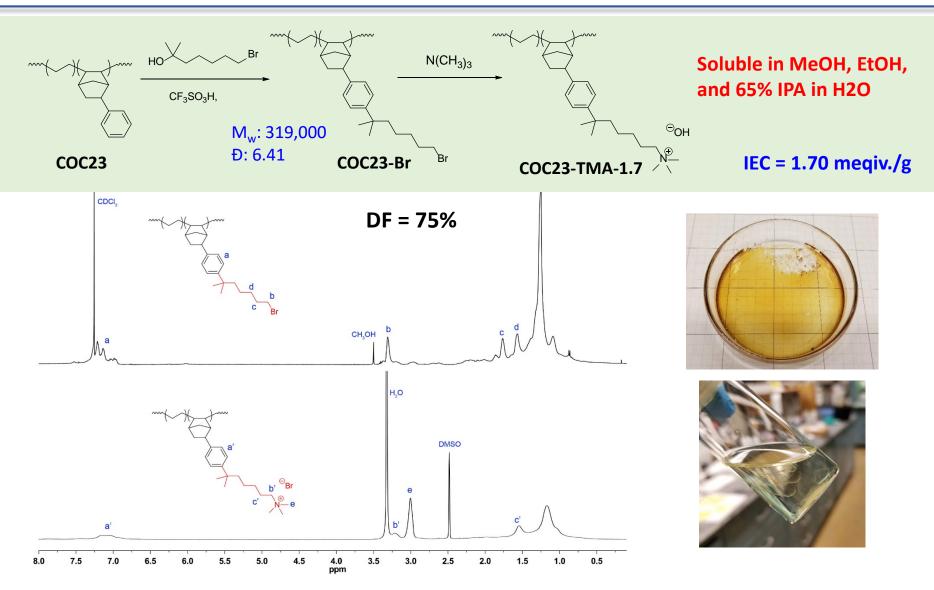
Additional COC AEMs

COC-2TMA


4

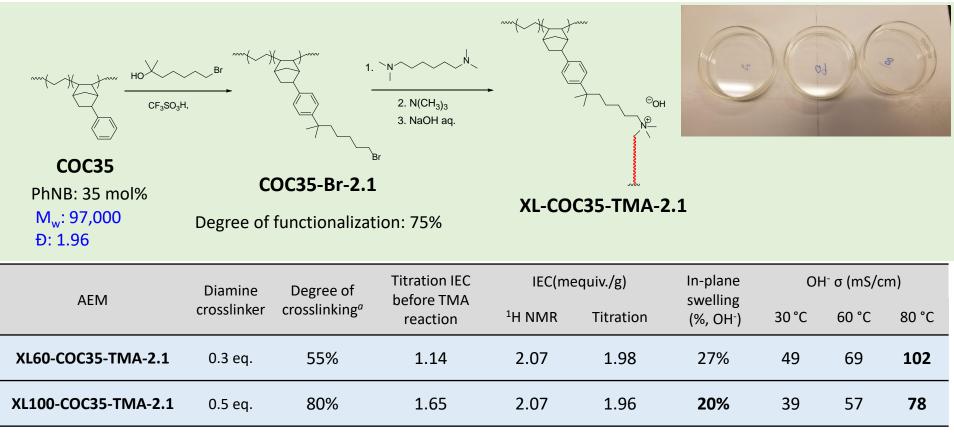
⊖он

Approach / Milestone


Milestone 1.1	Synthesis of COCs (Q1–Q6)	Polymer synthesis with high molecular weight (>100 kg/mol), ethylene composition (10–50 mol%)
Milestone 1.2	Friedel-Crafts bromoalkylation of COCs (Q3–Q6)	Optimization of synthetic process that gives degree of functionalization (30–90% of phenyl ring of COC)
Milestone 1.3	Ionic functionalization of COCs (Q3–Q6)	Optimization of polymer functionalization that affords COC AEMs with IEC = 1.5–2.5 mequiv./g
COC A	AEM Synthesis - Go/No-Go decision (Q6)	Demonstration of polymer AEMs that satisfy 50% of metric IDs 1 through 6
Milestone 2, 6	Reinforced Composite Membrane (Q3–Q9)	Fabrication of reinforced membranes with targeted thickness levels (25, 20, 15 mm)
Milestone 3, 7	Ex-situ Membrane Characterization (Q3–Q9)	Development of reinforced AEMs with IEC = 1.5– 2.5 mequiv./g.
Milestone 4	Ionomer-hydrogen oxidation catalyst interface (Q2–Q6)	The RDE experiments will be performed using COC thin film coated HOR catalyst electrodes.
Milestone 8	Ionomer-oxygen reduction catalyst interface (Q3–Q7)	The RDE experiments will be performed using COC thin film coated ORR catalyst electrodes
Milestone 9.1	MEA fabrication and fuel cell performance test (Q5–Q10)	AEM fuel cell peak power density > 1 W/cm ² for a MEA employing COC AEM and low PGM or non-PGM loading catalysts (< $0.1 \text{ mg}_{\text{Pt}}$ /cm ²).
Milestone 9.2	AEM and AEM fuel cell durability (Q6–Q10)	ASR after 1000 h AEMFC operation at \geq 60°C and constant current condition (0.6 A/cm ²): \leq 0.06 W cm ² .

Accomplishments: Synthesis of COCs

• As the PhNB content of COC-Phs increase, the T_q of the polymers increase from 43 °C to 109 °C


Accomplishments: Synthesis of COC-TMA

The synthesis of COC23-TMA-1.7 was successful, but dimensional stabilities and mechanical properties of the membranes were insufficient. The membranes broke into pieces during amination.

Accomplishments: Crosslinked COC-TMA

Simultaneous amination and crosslinking strategy

^aCalculated by titration IEC before the reaction with N(CH₃)₃, ^bmeasurement conditions: 50 °C, 50% RH

- Crosslinked COC-TMAs showed better mechanical properties than non-crosslinked COC-TMA, but it is still insufficient for fuel cell applications. The membranes were easily torn during handling (*no mechanical property measured*).
- Pore-filling reinforcement is required for better mechanical properties.
- Go/No-Go decision point target: OH⁻ conductivity 60 mS/cm at 80 °C, 20% swelling ratio (OH- form)

Accomplishments: Crosslinked COC-2TMA

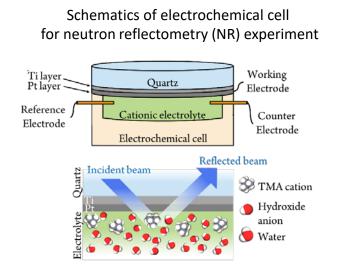
Simultaneous amination and crosslinking strategy

coc29	Br CF ₃ SO ₃ H,	Br	H H H H H H H H H H H H H H H H H H H		CH ₃₎₃ OH aq.			еон М-			
PhNB: 29 mo	1%	COC	29-2Br-1.9			XL-COC2)-2TMA	-1.9	4		1
M _w : 111,000 Đ: 2.06		Degree of fur	nctionalizatio	on: 30%						in the second	2
	Diamine	iamine Degree of	Titration IEC	IEC(me	quiv./g)	In-plane	Tensile stress ^b	Elongation at break ^b	OH ⁻ σ (mS/cm)		
AEM	crosslinker	crosslinking ^a	before TMA reaction	¹ H NMR	Titration	swelling (%, OH ⁻)			30°C	60 °C	80 °C
XL40-COC29- 2TMA-1.9	0.2 eq.	38%	0.72	1.91	1.83	18%	17	17	N/A	N/A	N/A
XL60-COC29- 2TMA-1.9	0.3 eq.	57%	1.08	1.90	1.89	18%	19	42	N/A	N/A	N/A
XL100-COC29- 2TMA-1.9	0.5 eq.	85%	1.60	1.89	1.87	20%	21	94	53	85	105

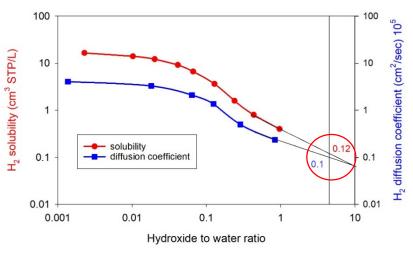
^aCalculated by titration IEC before the reaction with N(CH₃)₃, ^bmeasurement conditions: 50 °C, 50% RH

- Crosslinked COC-2TMAs showed better mechanical properties than crosslinked COC-TMAs. They are strong enough for handling, and most of properties are meeting with Go/No-Go decision point target
- Interestingly, tensile stress and elongation at break increased with increasing of the degree of crosslinking.
- Go/No-Go decision point target: OH⁻ conductivity 60 mS/cm at 80 °C, 20% swelling ratio, 25MPa tensile tress, and 35% elongation at break

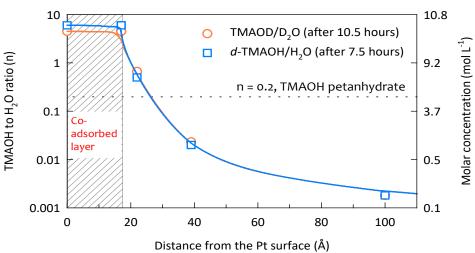
Accomplishments: Alkaline Stability


1M NaOH Solution at 95 °C for 250 h (as of early March 2020)

	Constant	IEC(mequiv./g)		IEC(mequiv./g)	
	Samples	¹ H NMR	Titration	after 250 h	
Сон Ср_ Сон	XL60-COC29-2TMA-1.9	1.90	1.89	1.92	
žen ne n	XL100-COC29-2TMA-1.9	1.89	1.87	1.91	
XL-COC29-2TMA-1.9					


- No sign of chemical degradation after 250h test in 1M NaOH Solution at 95 °C
- Go/No-Go decision point target: Alkaline stability, less than 3% degradation (IEC) in 1M NaOH aq. at 95°C for 500 h

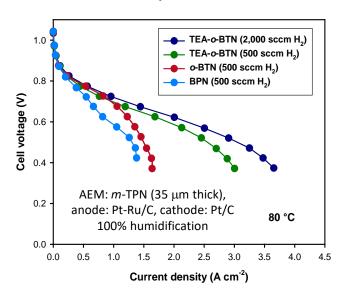
Accomplishments: catalyst interaction


Cation adsorption on alkaline HOR catalysts

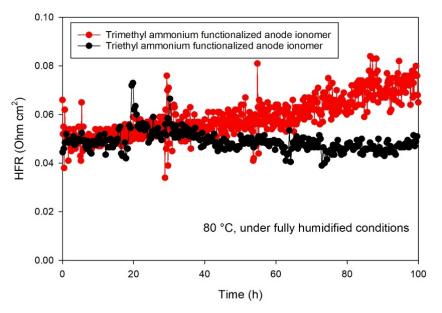
Hydrogen solubility & diffusion coefficient as a function of TMAOH to water ratio

Tetramethyl ammonium hydroxide (TMAOH) concentration profile on Pt after chronoamperometry at 0.1 V vs. RHE

- NR experiments showed that cation hydroxide concentration in the adsorbed layer on Pt HOR catalyst is extremely high which may significantly reduce hydrogen permeability.
- NR study further showed that the thickness of the co-adsorbed layer of tetraethyl ammonium hydroxide is ~2 times thinner (Technical backup slide 2)



Accomplishments: Model ionomer study



 (a) poly(biphenyl alkylene); (b) poly(o,o'-bitolyl alkylene);
(c) tetraethyl ammonium hydroxide (TEAOH) functionalized o-BTN

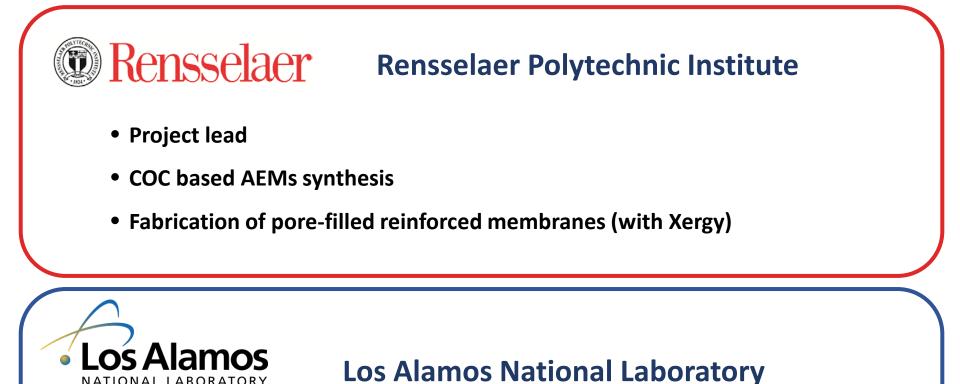
Impact of anode ionomer on H_2/O_2 AMFC performance

High frequency resistance change of two MEAs over time

- TEAOH functionalized ionomer (TEA-*o*-BTN) shows much higher performance and stability due to less adsorbing characteristics.
- TEA-*o*-BTN ionomer will be used for project performance evaluation.

Accomplishments and Progress: Responses to Previous Year Reviewers' Comments

2019 AMR Reviewers' Comments and responses


• The project's tasks are all relevant, but moving chemical durability up earlier is suggested.

- Chemical durability test was performed in 1M NaOH aq. at 95°C for 250 hours, and LX60-COC29-2TMA-1.9 and LX100-COC29-2TMA-1.9 didn't show any degradations. IECs of the AEMs were preserved after the test. The results of 500 h test will be reported in following year.

• The project team could perhaps provide a better breakdown of synthesis risks and mitigations.

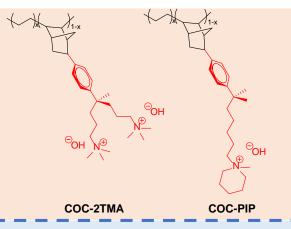
- The detail synthetic scheme was provided in accomplishments section.

Collaborations – Project team

Ionomer-catalyst interface study

EST.1943 -

• MEA fabrication and fuel cell performance test


Remaining Challenges and Barriers

- Scale up synthesis and cost reduction
- Mechanical properties improvement and membrane casting optimization of pore-filled reinforced membranes
- Compatibility study of COC AEMs with support materials for pore-filled reinforced membranes

Proposed Future Work

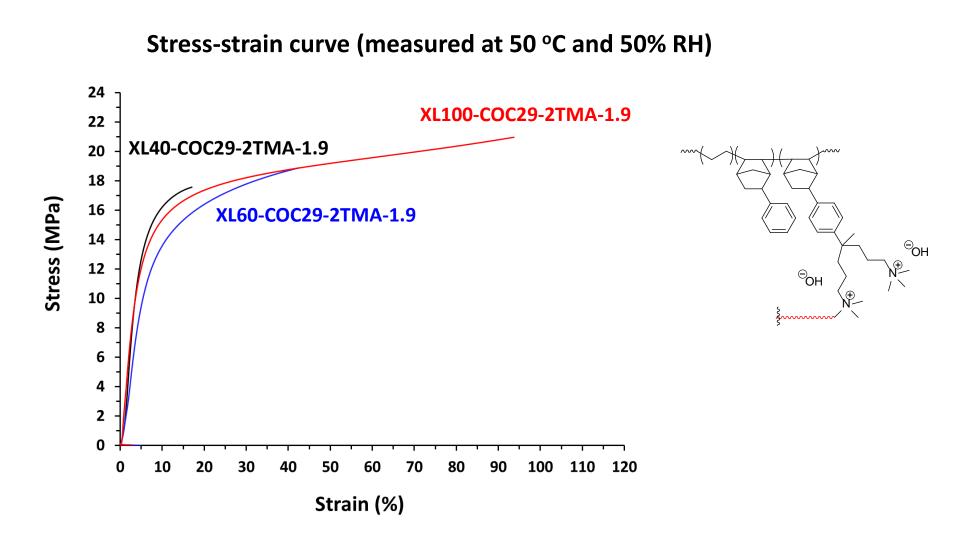
FY 2021

- Synthesis and analysis of COC AEMs (RPI)
 - Crosslinked COC-2TMA and COC-PIP
 - Fabrication of pore-filled reinforced membranes
 - Ex-situ membrane characterization

- MEA fabrication and fuel cell performance test (LANL)
 - Preparation of soluble ionomer dispersions and catalyst ink
 - Investigation of catalyst layer and AEM compatibility
 - Measurement of alkaline membrane fuel cell performance employing COC AEMs

Any proposed future work is subject to change based on funding levels.

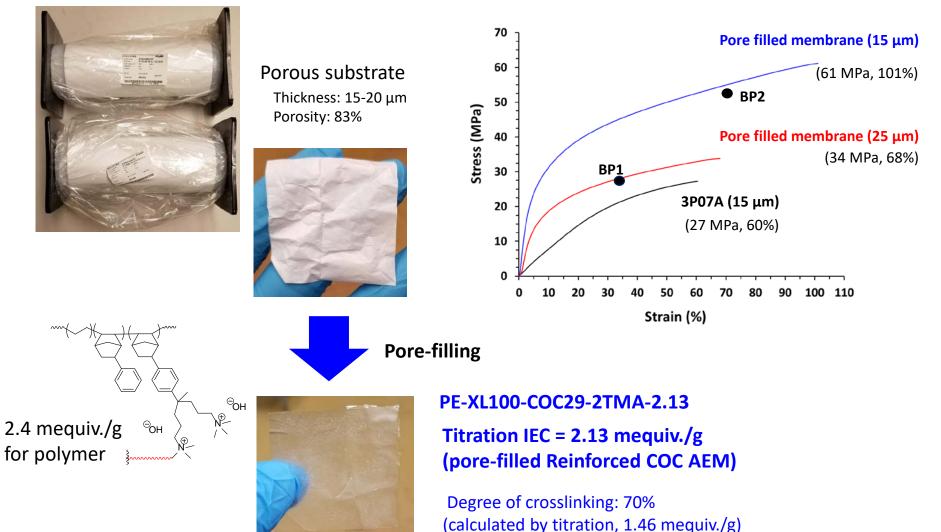
Summary


Objective: Development of high-performance, low-cost AEMs by synthesis of a series of QA-functionalized cyclic olefin copolymers and impregnation using reinforcement technology.

Technical Metrics	the-state-of-the-art AEM (m-TPN1)	2019 Target (Q6) Go/No-Go decision	Ultimate Target (Q10)	LX100-COC29-2TMA-1.9
Hydroxide conductivity (in-plane, 80 °C)	112 mS/cm	60 mS/cm	120 mS/cm	105 mS/cm
Alkaline stability (1M NaOH, 95 °C)	720 h, IEC drop <2 %	500 h, <3%	1000 h, <3%	250 h, No degradation
Tensile strength at break (50 °C, 50% RH)	29 MPa	25 MPa	50 MPa	21 MPa
Elongation at break (50 °C, 50% RH)	36%	35%	70%	94%
Swelling ratio (OH ⁻ form, 25 °C)	16%	20%	10%	20%
Area specific resistance (80 °C; in fuel cell)	$0.18 \ \Omega \ cm^2$	$0.10 \ \Omega \ cm^2$	$0.05 \ \Omega \ cm^2$	(0.048 Ω cm²) ^a

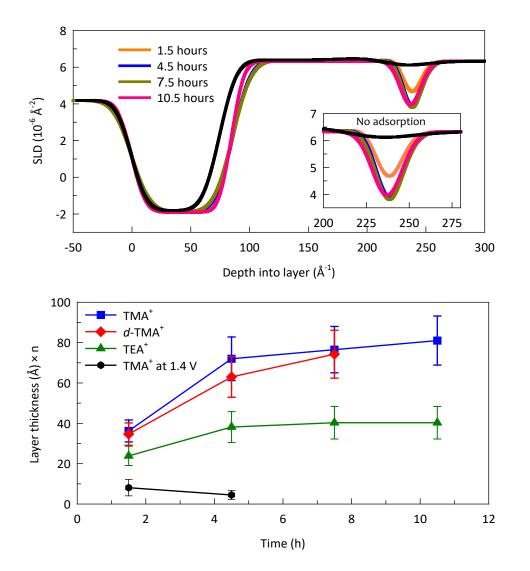
^{*a*}Calculated from hydroxide in-plane conductivity, ASR = L/ σ

Technical Backup Slides


Mechanical Properties of XL-COC29-2TMA-1.9

Pore-filled reinforced membranes

High Molecular Weight Polyethylene



TEAOH adsorption on Pt electrode

SLD profiles of NR as a function of distance from the surface from fitting the experimental NR data

- NR SLD profile shows
- 1) TEAOH adsorption is cumulative.
- The highest adsorption occurs at 0.1 V vs. RHE (HOR potential).
- The concentration of TEAOH is high (TEAOH to water: ~ 5).
- The thickness of adsorbed layer of TEAOH, however, ~2 times thinner than TMAOH.

