Durable Fuel Cell MEA through Immobilization of Catalyst Particle and Membrane Chemical Stabilizer

Nagappan Ramaswamy General Motors LLC, Fuel Cell Business

May 19, 2020

Project ID FC323

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview Timeline, Barriers, Budget

Timeline

- Project start date: 1 Oct 2019
- Project end date: 28 Feb 2023
- Percent complete: < 5%</p>

Budget

- Total Funding Spent as of 03/31/2020: \$0.05M
- Total DOE Project Value: \$2.73M
- Cost Share: 26.8%

Barriers

- A. Durability
 - < 10% power degradation after 30,000 hrs.
- B. Cost
 - $< 0.2 \text{ mg}_{\text{Pt}}/\text{cm}^2$ cathode Pt metals loading

C. Efficiency

> 65% efficiency to decrease fuel cost

Partners

- General Motors LLC (Project lead)
- Subcontractors: Contracts not yet signed
 - 3M Company (sub)
 - Pajarito Powder LLC (sub)
 - Colorado School of Mines (sub)
 - Cornell University (sub)
- FCPAD Consortium

Relevance Objectives and Impact

- Objectives: Materials-approach to develop, integrate and demonstrate a direct-H₂ fed PEM fuel cell MEA for medium-duty (MD) and heavy-duty (HD) applications featuring
 - Iow cost cathode PGM loading of < 0.2 mg_{Pt}/cm²
 - high efficiency fuel efficiency of >65%
 - high durability < 10% degradation in power density after 30,000 hours of operation (a lifetime of 1 Million miles, ~3X compared to light-duty (LD) vehicles)

Metric	Units	DOE Target	End of Project Target	Status of Proposed Approach (PtCo)	•
PGM loading (total)	mg _{PGM} /cm ²	0.25	< 0.25	0.25	0.25
Mass activity (MA) ^a	A/mg _{PGM}	> 0.44	> 0.44	0.78	0.31
Loss in initial catalytic activity (post-90k) ^b	% MA loss	< 40	< 40 after 3X AST	66%	28%
Performance at 0.8 V (150 kPa, 80°C)	A/cm ²	0.3	0.3	0.4	0.2
Performance at rated power (150 kPaabs, 94 °C)	mW/cm ²	> 1.0	> 1.0	TBD	TBD
Performance at rated power (250 kPaabs, 94 °C)	W/cm ²	NA	> 1.3	1.45	1.35
Loss in performance at 0.8 A/cm ² (90-k catalyst cycles) ^b	mV	< 30	< 30 after 3X AST	40	16
Area specific H ⁺ resistance (80 °C & water partial pressures from 25-45kPa)	Ω·cm²	0.027	<0.02	0.027	0.027
Membrane durability (Combined chemical/mechanical) ^e	Hours	30000	30000	10000	10000

^a Test at 80 °C, H₂/O₂ in MEA; fully humidified with total outlet pressure of 150 kPaa; anode/cathode stoichiometry 2/9.5;

^b Catalyst/support durability testing performed according Tables P1/P2 in Appendix of EERE Fuel Cells MYRRDD Plan

^e To demonstrate the ability to reach 30,000h of drive cycle durability, the goal is for the membranes developed in this project to run for

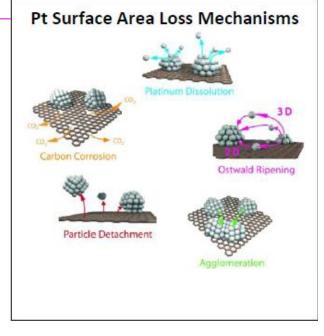
<1625h in the 90°C HAST test, which has proven to accelerate the time to failure of a state-of-the-art membrane by >15X.

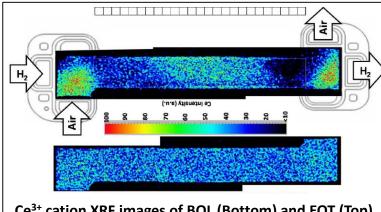
Relevance

Major technical challenges to be overcome

- 1) Electrocatalyst surface area loss
 - 1) Major contributor to cell voltage loss
 - 2) Mechanisms:
 - 1) Ostwald ripening
 - 2) Pt particle migration and coalescence
 - 3) Pt-mass loss to membrane phase ("Pt-band" formation)
- 2) Electrocatalyst specific activity loss
 - 1) Pt-shell thickening (extension of Ostwald ripening)
 - 2) Co²⁺ dissolution and contamination

3) Local reactant transport and HCD performance losses


- 1) Relatively a minor loss factor at BOL ($\geq 0.1 \text{ mg/cm}^2$ loading)
- 2) Plays a role in stack sizing (EOT performance at HCDs)
 - 1) Catalyst aging: ECSA loss, Pt particle location changes, Pt-ionomer interactions


4) Carbon Support Corrosion

- 1) Idle/OCV conditions (0.90 to 0.95 V)
- 2) Load cycles (0.6 to 0.95 V, ~90k cycles)
- 3) Unmitigated startup/shutdown transients (> 1.0 V)

5) Cerium migration and membrane durability limitations

- 1) Migration of Ce³⁺-cation salt additive due to RH gradients
- 2) Can lead to premature membrane failure
- 3) Key factor to enable 25000 hours MEA durability

Ce³⁺ cation XRF images of BOL (Bottom) and EOT (Top) MEA subjected to 90 °C, 30% RH HAST test

E. Padgett *et al., J. Electrochem. Soc.,* 166, 4, F198-F207, (2019)

Y.H. Lai et al., J. Electrochem. Soc., 165, 6, F3217-F3229, (2018)

Overall Approach

Durable cathode and membrane development via immobilization

- 1) Develop highly-accessible, graphitized mesoporous carbon (GMC) support with anchoring agents (GM/Pajarito/Cornell)
 - 1) Develop graphitized carbon supports with tuned mesoporosity
 - 2) Embed acid-stable and conductive metal/metal-oxide based anchoring agents to prevent catalyst surface area loss

Expected Outcome: catalyst with higher resistance to nanoparticle sintering and carbon support corrosion

- 2) Develop ordered PtCo intermetallic catalysts (GM/Pajarito/Cornell)
 - 1) Develop intermetallic catalysts with ordered Pt₃Co core and Pt shell that show enhanced retention of activity and HCD performance

Expected Outcome: PtCo catalysts with ORR activity and HCD performance exceeding DOE targets and with resistance to surface area loss.

3) Stabilization of catalyst with polymers and additives (GM)

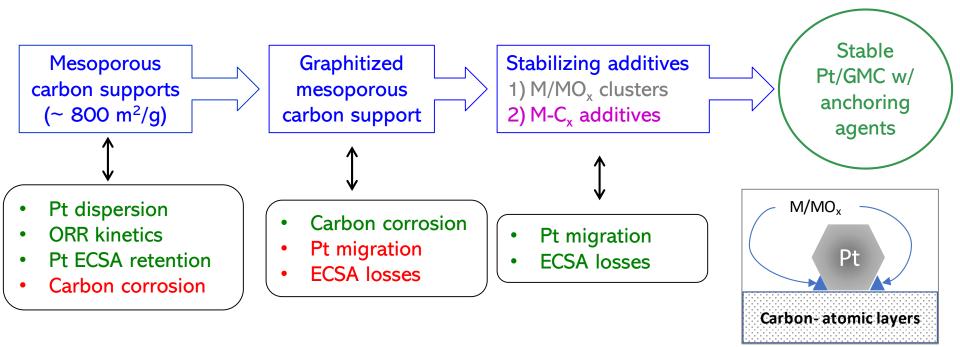
1) Modify catalyst-ionomer interface, water activity, oxide formation kinetics with hydrophobic polymer additives

Expected Outcome: Electrode with less ECSA loss via decreased Pt dissolution/redeposition

4) Stabilize PFSA membranes via stabilizer immobilization (GM/3M/CSM)

- 1) Heteropoly acid tethered membrane
- 2) Cerium zirconium oxide nanoparticles/nanofibers stabilized membrane

Expected Outcome: Highly durable membranes that meet 30,000 hours of durability requirements

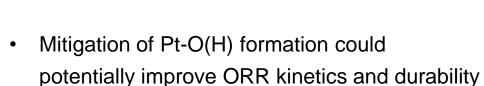


Challenge: Mitigate Pt surface area loss via prevention of migration/coalescence

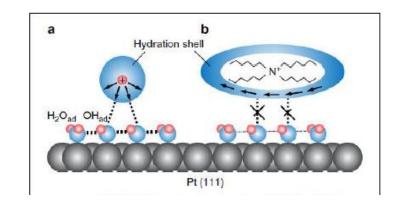
Approach:

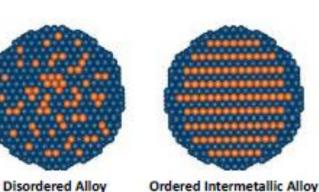
- Develop graphitized mesoporous carbon (GMC) support with tuned micro-/meso-porosity
- Modify Pt-carbon interface via use of metal anchoring agents to mitigate Pt dissolution/migration

Path to highly durable catalyst development



Challenge: Mitigate surface area loss via prevention of Pt and Co dissolution


Approach:

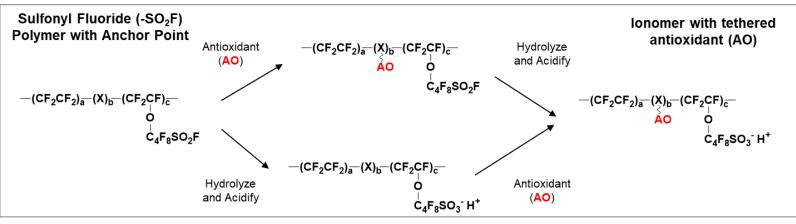

- Improve catalyst nanostructure durability via use of ordered-PtCo intermetallic catalysts
- Modify Pt-ionomer interface via use of hydrophobic polymer additives

- Ordered Pt₃Co catalysts enable higher ECSA, MA and cell voltage retention due to increased resistance to PtCo dissolution
- Synthesize o-Pt₃Co catalysts on the anchored GMC support

• Evaluate the effect of commercially available hydrophobic polymer, ionic liquids and large cations

Approach (Membrane Durability)

Stable PFSA membrane using covalently tethered additives

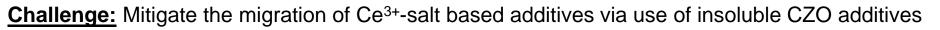


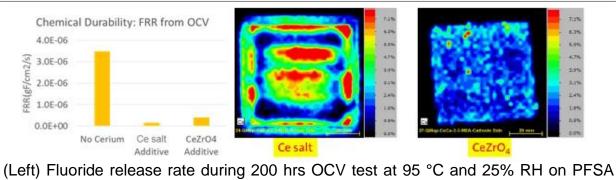
Challenge: Covalently immobilize •OH-radical decomposition additives in the membrane

Approach:

GM

 Use heteropolyacid (HPA) based antioxidants as radical decomposition catalysts covalently attached to the PFSA membrane


- Synthesize sulfonyl fluoride (-SO₂F) polymers with reactive anchor points (3M)
- Attach antioxidant (AO) to polymer through covalent bonds (CSM)
 - Options: Attach prior to hydrolysis and acidification or vice versa
- Vary monomer ratios a:b:c to optimize ionomer performance and durability (3M and CSM)
- Fabricate and test ePTFE supported membranes using HPA-tethered PFSA ionomers (GM)


Approach (Membrane Durability)

Stable PFSA membrane using cerium zirconium oxide additives

Approach:

- Use of cerium zirconium oxide (CZO) nanoparticles or nanofibers as additive in MEA, for:
 - Membrane chemical stability
 - Reduced Ce migration
- Apply CZO in membrane or electrode layers
- Evaluate fuel cell performance and chemical stability on MEAs with CZO
- Evaluate Ce migration profile using XRF mapping (post the highly accelerated stability test)

(Left) Fluoride release rate during 200 hrs OCV test at 95 °C and 25% RH on PFSA membranes with and without Ce stabilizers; (center) Ce XRF map of Ce salt stabilized PFSA membrane and (right) $Ce_xZe_yO_4$ nanofiber stabilized PFSA membrane after 85 hrs at 1.0 A/cm², 80 °C and 100% RH.

- CZO nanofibers may also provide enhanced mechanical durability
- Negligible local cerium redistribution within the membrane compared to mobile Ce salts

GM

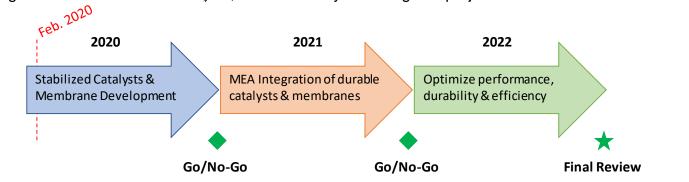
Approach Milestones and go/no-go decisions

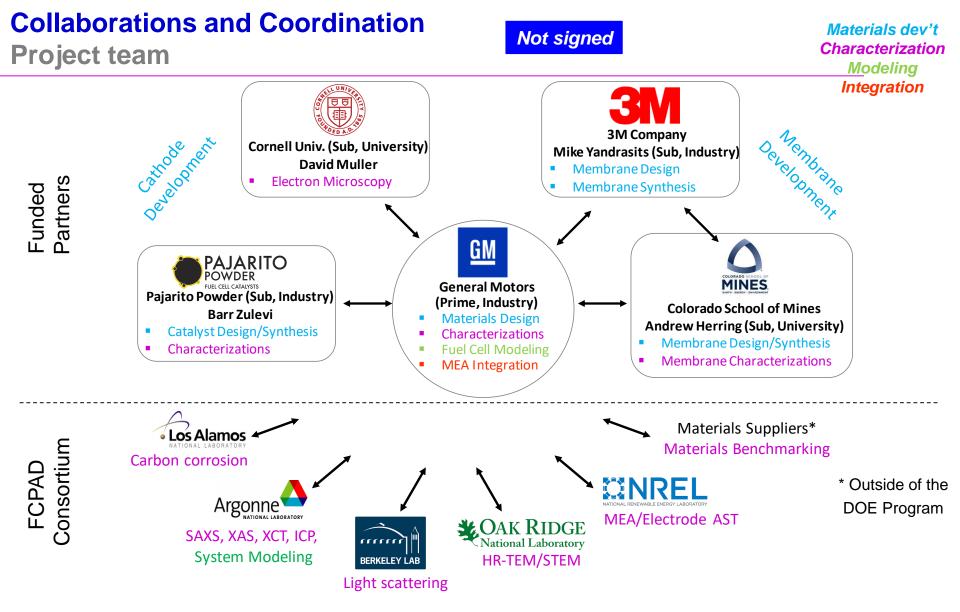
TASK 1 – Development of Catalyst and Membrane Materials with Chemical Stabilizers

Go/No-go criteria: Anchored Pt catalyst with >60 m²/g_{Pt} at BOL and >35 m²/g_{Pt} ECSA at EOT (30k LDV AST MEA)

- Develop anchored Pt-M/MO_x nanocluster catalysts supported on GMC
- PFSA synthesis and HPA functionalization
- \Box Ce_xZr_vO₄ nanoparticle/nanofiber PFSA membrane development
- □ Fuel cell MEA performance and diagnostics

TASK 2 – Integration of Highly Durable Catalysts and Membranes into MEAs


Go/No-go criteria : Anchored Pt catalyst with <30 mV loss at 0.8 A/cm² (60k LDV AST MEA) and membrane that meets all DOE Technical Targets (gas crossovers, ASR, chemical and mechanical durability)


- Optimization of down-selected anchored GMC catalyst
- ePTFE supported membrane development
- □ Fuel cell MEA performance and durability (AST)
- Advanced characterizations of catalysts and membranes

TASK 3 – Optimization of High Performance, Efficiency and Durability

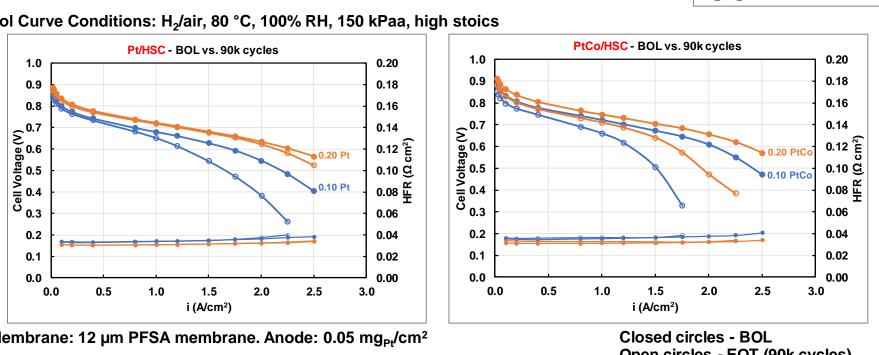
Milestone: Deliver MEA with <0.2 mg_{Pt}/cm²_{cathode}, <40% loss in MEA, <10% loss in power after 25000 hours based on fuel cell system model lifetime projection studies

- Deliver MEA with state-of-the-art durable catalyst and membranes with high performance, efficiency and durability
- □ Ordered intermetallic PtCo catalyst development on down-selected anchored GMC support
- Optimization for durability of membranes with chemical stabilizers
- □ MEA degradation mechanisms analysis; MEA durability modeling and projections to life

- All the partners are within of the DOE Hydrogen and Fuel Cells Program
- There is extensive collaboration between the funded partners who are experts in their fields of research and all of them play a critical role in achieving the project objectives
 11

Technical Accomplishment FCPAD MEA benchmarking (Pt vs. PtCo)

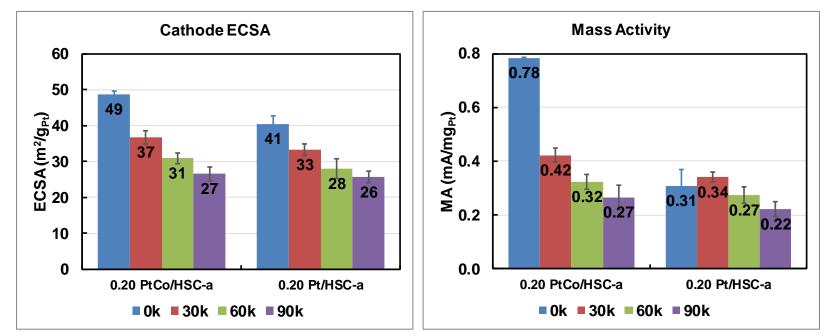
- Benchmark the durability of baseline Pt/HSC and PtCo/HSC catalysts
 - Use light-duty vehicle catalyst AST protocol (90k cycles)
- Both catalysts have a BOL average particle size of ~4.5 nm


Catalyst AST protocol Trapezoidal waveform 0.6 to 0.95 V, 90k cycles H₂/N₂, 80 °C, 100% RH

Pol Curve Conditions: H₂/air, 80 °C, 100% RH, 150 kPaa, high stoics

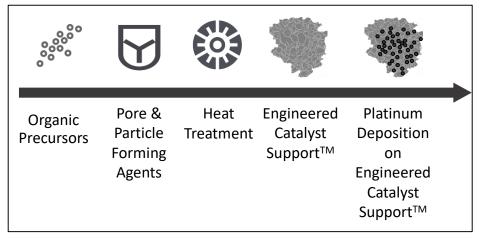
GM

0.2 0.2 0.04 0.1 0.1 0.02 0.0 0.0 0.00 2.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 3.0 i (A/cm²) i (A/cm²) **Closed circles - BOL** Membrane: 12 µm PFSA membrane. Anode: 0.05 mg_{Pf}/cm² Open circles - EOT (90k cycles)

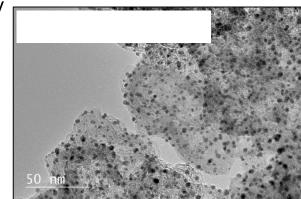

- PtCo/HSC alloy catalyst show significant loss in cell voltage post-90k voltage cycles
- Pt/HSC catalyst at 0.2 mg_{Pt}/cm² shows exceptional stability in cell voltage at EOT

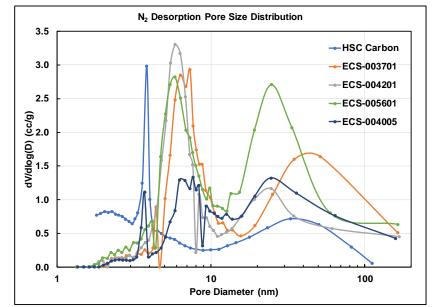
Technical Accomplishment FCPAD MEA benchmarking (Pt vs. PtCo)

- ECSA of the two catalysts are ~45 m^2/g_{Pt} at BOL
- PtCo/HSC is ~2.5 times more active than Pt/HSC

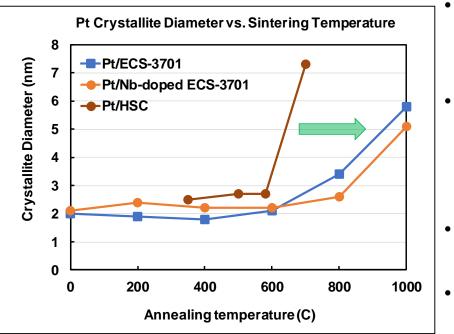


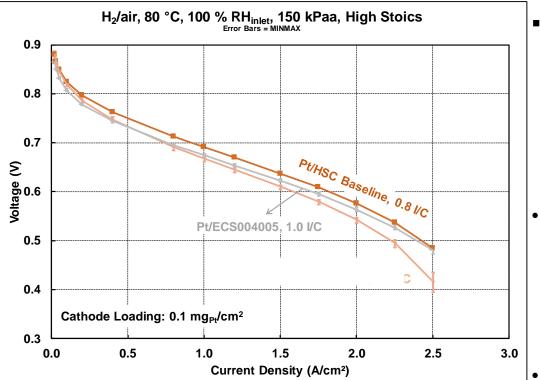
- Roughly similar ECSA loss for both Pt and PtCo (from ~45 to ~25 m²/g_{Pt} post-90k cycles)
- Mass activity loss for PtCo/HSC catalyst more than the DOE target of <40% at EOT
 - Activity benefit of PtCo over Pt is almost lost within the first 30k cycles.
- Mass activity of Pt/HSC stable in the first 30k cycles followed by a ~30% loss post-90k cycles




- PAJARITO POWDER FUEL CELL CATALYSTS
- Varipore manufacturing platform is being used to develop catalyst with three focal points
 - Mesoporosity (~6 nm and ~40 nm) for Pt accessibility and mass transport
 - Graphitization (500 to 900 m²/g) for carbon stability
 - Metal dopants (ex: Niobium) for Pt stability

Varipore Manufacturing Platform


Four ECS supports have been manufactured with varying pore size and pore volumes that will be compared to determine the optimal support shape and pore size form.

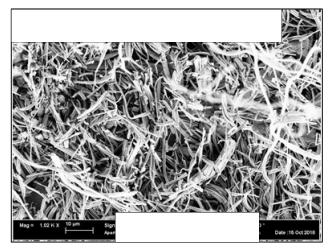


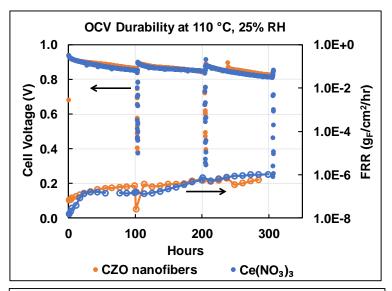
- For the anchored catalysts, the addition of metal anchoring agent on the GMC support involves two different approaches
 - a) MO_x nanocluster approach
 - b) the atomically dispersed M-C_y embedded approach
- Several different metal dopants (ex: Niobium) for Pt catalyst stability have been shortlisted

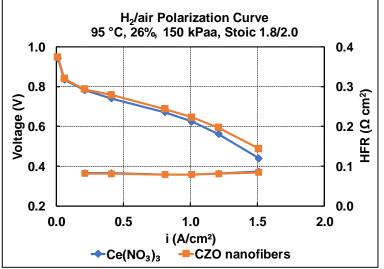
- *Ex situ* studies have been carried out to understand the sintering resistance of the ECS support and the metal anchoring agent.
- XRD crystallite diameter shows that the ECS support provides sintering resistance to Pt compared to KetjenBlack type conventional HSC supports
- Metal anchoring agent (ex: Nb) provides further additional resistance towards Pt sintering
- An *in situ* CO chemisorption method to quantify surface area loss via thermal sintering is also being developed

Technical Accomplishment Pt/GMC catalysts with tuned porosity

Catalyst	H _{UPD} ECSA (m²/g _{Pt})	Specific Activity (µA/cm² _{Pt})
20% Pt/HSC Baseline	73 ± 5	427 ± 16
Pajarito 20% Pt/ECS003701	70 ± 5	462 ± 19
Pajarito 20% Pt/ECS004005	65 ± 5	353 ± 58

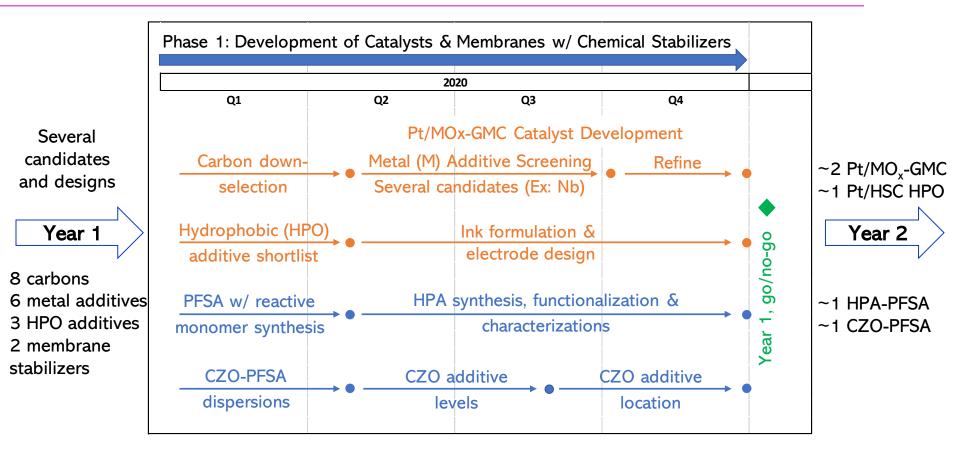

- Promising BOL performance for Pajarito catalysts. Need more studies on ink formulation and electrode design to suit the engineered carbon supports with tuned porosity.
- Criteria used for metal dopant selection – acid stability, cost, Pt affinity, membrane compatibility, toxicity and prior literature information.
- A priority list of metal dopants has been prepared based on several criteria
 - Focus on several acid-stable elements (ex: Nb)
 - Ir and Au are precious metals that could be used in low quantities due to their high stability


Technical Accomplishment


CZO membrane additives - OCV durability and H₂/air performance

- CZO immobilized PFSA membranes were successfully fabricated
 - solution containing Ce_xZr_yO₄ additive and PFSA ionomer was dispersed in water/alcohol solvent followed by coating to fabricate 12 µm thick ePTFE reinforce membranes

- OCV durability shows similar results between Ce(NO₃)₃ salt and CZO nanofiber membrane additives without compromising the fuel cell performance
- This confirms the functionality of the CZO nanofiber additive in membrane durability


<u>GM</u>

Responses to Last Year AMR Reviewers' Comments

• New Project. This project was not reviewed last year.

Proposed Future Work

Materials selection: 1st year work flow

- Year 1 to focus on individual development of stabilized catalysts and membranes along with extensive materials characterizations (*in-house and FCPAD*)
- Year 2 will focus on integration of highly stable catalysts and membrane candidates while continuing to refine the synthesis of materials

Proposed Future Work

Selection methods

Component	Sub component	Property	Method			
	Carbon	Surface area, pore structure, Graphitization	N ₂ adsorption (BET-BJH) Raman Spectroscopy			
	Metal additive (M/MO _x)	Acid stability, Pt affinity Membrane Compatibility Cost	ICP-MS, thermodynamics, Pt-M alloy heat of formation H ₂ /air OCV durability			
Cathode	HPO Additive	Dispersibility, Activity, Stability	Catalyst ink rheology, RDE activity, MEA performance and durability			
		Catalyst activity, Reactant (H ⁺ , O ₂) transport	MEA H ₂ /O ₂ , H ₂ /air polarization H ₂ /N ₂ impedance, O ₂ limiting current			
	Catalyst (Pt, PtCo/C)	Pt migration, Catalyst durability Co ²⁺ distribution	STEM imaging, <i>in situ</i> sintered CO chemisorption, DOE LDV AST (catalyst & carbon), EPMA, μ-XRF			
Membrane	HPA-PFSA	Performance and	MEA H ₂ /air polarization, conductivity,			
	CZO-PFSA	durability	OCV durability, highly accelerated stress test (HAST), Ce-XRF mapping			

□ Many techniques were identified to use for selection although not all will be applied.

- □ Some techniques are solely for understanding performance (modeling).
- □ MEA performance will ultimately be the overriding selection criteria.

HPA Immobilized Membranes

- First experimental terpolymer produced with reactive anchor point
- Attached antioxidant to terpolymer. First membrane sample casted. Benchmark the chemical stability of functionalized ionomer prior to antioxidant addition (BP1)
- Produce additional precursor ionomers with different comonomer ratios (a:b:c) (BP2)

- Fabricate mechanically reinforced membranes with tethered antioxidant
- Evaluate durability in DOE AST and GM's Highly Accelerates Stress Test (HAST) at 90 °C which combines chemical and mechanical stressors conditions (FC156)

CZO Immobilized Membranes

- Conduct XRF on Ce distribution
- Test performance, OCV durability, HAST durability on MEAs with different levels of CZO in membranes or electrodes

Proposed Future Work FCPAD engagement and timeline

FCPAD consortium laboratories will be engaged strategically for achieving the overall goals of the project (electrochemical diagnostics, x-ray characterizations, analytical measurements, post-mortem experiments, fuel cell system modeling studies)

FCPAD Engagement Timeline							24		24
DE-FOA-0002044 (Control #2044-1551)				202	.0	20	21	20)21
	-		Q4	Q1 Q2	Q3 Q4	Q1 Q2	2 Q3 Q4	Q1 Q2	2 Q3 Q
TASK	FCPAD Lab	Sample Type							
Year 1 - 2020									
Light scattering and viscosity (CZO - PFSA dispersions)	LBNL	lonomer dispersions							
SAXS and XCT characterizations	ANL	Electrodes							
Ex situ membrane characterizations	LBNL	Membranes							
Imaging of stabilizing additives in membranes	ORNL	Membranes							
Fuel cell MEA diagnostics (cathode and membrane)	NREL	MEAs							
Year 2 - 2021									
MEA electrochemical diagnostics	NREL	MEAs							
Cathode carbon corrosion (in situ NDIR)	LANL	MEAs							
X-ray absorption spectroscopy (XAS) of catalysts	ANL	Electrodes							
Electrochemical ICPMS for PtCo catalyst durability	ANL	Catalysts							
Imaging of stabilizing additives in membranes	ORNL	Membranes							
Year 3 - 2022									
MEA voltage cycling sensitivity measurements	NREL	MEAs							
MEA post-mortem analysis	All/FC-PAD	MEAs							
MEA Durability Modeling and Life-Projections	ANL	n/a							

Summary

- Benchmarking of current state-of-the-art PtCo/HSC and Pt/HSC shows exceptional stability for pure-Pt compared to the alloy catalyst (90k cycles AST cycles, 0.2 mg_{Pt}/cm²)
- □ Four GMC supports have been manufactured with varying pore size and pore volumes that will be compared to determine the optimal support shape and pore size form.
 - GMC supports with and without Nb-additive shows exceptional resistance towards Pt thermal sintering compared to conventional HSC support
 - □ More than six metal additives (Nb, Ta, Zr, Re, Ir, Au etc.) are being evaluated as immobilization agents for catalyst stabilization
- CZO immobilized PFSA membranes have been successfully demonstrated for mitigation of membrane degradation.
- □ HPA immobilized membranes have been successfully fabricated
 - Durability evaluation ongoing
- Discussions with FCPAD consortium are ongoing and plan is in place to engage the national labs once the agreements are in place.

Acknowledgements

<u>DOE</u>

- Donna Lee Ho (DOE Program Manager)
- Eric Parker
- Daniel Bertletti

General Motors LLC

- Yevita Brown
- Aida Rodrigues
- Anusorn Kongkanand
- Craig Gittleman
- Swami Kumaraguru
- Ruichun Jiang
- David Masten
- Wenbin Gu
- Ratan Kukreja
- Yeh-Hung Lai
- Frank Coms
- Roland Koestner
- Matthias Bork
- Jim Henry
- Richard Wehbe
- Peter Harvey, David Lindsey, Ken Holt
- Kathryn Stevick, Ryan Siebert

<u>3M</u>

- Michael Yandrasits (sub-PI)

Pajarito Powder

- Barr Zulevi (sub-PI)
- Alexey Serov
- Geoff McCool, Henry Romero, Sam McKinney, Mikaela Dicome and Kyle Ellis

Colorado School of Mines

- Andrew Herring (sub-PI)
- ChulOong (Chris) Kim and Mei Kuo

Cornell University

- Prof. David A. Muller (sub-PI)

FC-PAD

- Rod Borup
- Adam Weber
- Mukund Rangachary
- Deborah Myers
- Rajesh Ahluwalia

Technical Back-Up Slides

MEA Development for Medium- and Heavy-Duty Truck Applications Requirements from FCPAD

S. No.	FC PAD Lab	Analytical technique/Models	Component	Comments
		SAXS/u-SAXS	Catalysts	Pt particle size distribution (BOT and EOT)
		X-ray absorption spectroscopy	Catalysts	Metal additive oxidation state and coordination chemistry
	ANL	Pt dissolution (<i>in situ</i> ICP- mass spectrometry)	Catalysts	<i>In situ</i> potential dependent studies on Pt and metal additive electrochemical dissolution characteristics
4		X-ray computed tomography	Electrodes	Catalyst layer characterizations
5		MEA durability modeling and projections-to-life	MEAs	Lifetime projections based on catalyst/MEA AST results
6	LANL	MEA Carbon corrosion (<i>in situ</i> ND infrared)	MEAs	Carbon corrosion in the load cycle region (0.6 to 0.95 V) – impact of catalyst layer hydrophilicity and structural changes on cell voltage loss over 3X durability cycles
	LBNL	Light scattering and viscosity measurements	CZO- ionomer dispersions	Ionomer dispersion characteristics; determine particle size distributions and ionomer domain sizing studies
8		Membrane characterizations	Membranes	Impact of CZO on membrane properties
9	NREL	MEA diagnostics MEA voltage cycling durability	MEAs	Impact of operating conditions, cathode catalyst layer electrochemical characterizations
10	ORNL	Microscopic imaging	Membranes (HPA dispersion)	HPA and CZO distribution in the membrane

Publications and Presentations

• New Project. This project was not reviewed last year.

			Milesto	ne Summary Table		
	Recipient Name:			General Motors LLC		
	Project Title:		Durable F	uel Cell MEA through Immobilization of Catalyst Particle and Membrane Chemical	Stabilizer	
Task Number	Task Title	Milestone Type (Milestone or Go/No-Go Decision Point)	Milestone Number* (Go/No-Go Decision Point Number)	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process (What, How, Who, Where)	Anticipated Quarter (Quarters from Start of the Project)
1.2.1	Catalyst characterizations	Milestone	M1.1	Establish baseline catalysts and ex situ surface area measurement protocols	GM/Pajarito/C ornell/FC-PAD	Q1
1.1.1	Develop Pt-MOx nanocluster catalysts supported on GMC	Milestone	M1.2	Provide >5g of first iteration of Pt-MOx/GMC catalyst to GM	Pajarito/GM	Q2
1.1.5	Prepare and characterize CexZryO4 nanoparticle/PFSA dispersions	Milestone	M1.3	Prepare CexZryO4 nanofiber or nanoparticle /PFSA dispersions with at least 3 different CexZryO4 loading levels	GM/FC-PAD	Q3
1.1.3	Polymer Synthesis	Milestone	M1.4	Copolymers with 3 different levels of tetherable monomer delivered for functionalizing with HPA	3M	Q4
Phase 1	Development of Catalysts and Membranes with Chemical Stabilizers	Go/No-go	MA1	Anchored supported Pt catalyst with > 60 m^2/g_{Pt} ECSA at BOL in MEA and > 35 m^2/g_{Pt} ECSA after 30,000 cycles of DOE LDV catalyst AST.	All	Q4
2.2.1	MEA performance, electrochemical diagnostics and modeling	Milestone	M2.1	Validate anchored Pt/GMC catalysts in MEAs (BOL ECSA >60 m^2/g)	GM/FC-PAD	Q5
2.2.2	AST for anchored Pt/GMC catalyst durability	Milestone	M2.2	Demonstrate durability enhancements with anchored Pt/GMC catalysts (<30% ECSA loss after 30000 cycles)	GM	Q6
2.1.2	Prepare ePTFE supported membranes with chemical stabilizers	Milestone	M2.3	HPA immobilized membranes that enable 200 hours of OCV at 90° c/30% RH	GM/CSM/3M	Q7
2.2.3 2.2.4	 Quantify anchored GMC support corrosion in MEA using in situ NDIR X-ray absorption spectroscopy of MOx anchoring site durability 	Milestone	M2.4	Report on the mitigation of carbon corrosion with GMC and the stability of MOx anchoring sites	FC-PAD	Q8
Phase 2	Integration of Highly Durable Catalysts and Membranes into MEAs	Go/No-go		 Anchored supported Pt catalyst with < 30 mV loss at 0.8 A/cm² after 60,000 cycles of DOE LDV catalyst AST protocol. Membrane with H₂ & O crossovers (<2mA/cm²), 80°C proton ASR (<0.02 ohm cm2), electrical resistance (<1000 ohm cm2), chemical durability (>500h in AST), mechanical durability (>20,000 cycles in AST) 	All	Q8
3.1.3	Catalyst, support and membrane AST on SOA MEA	Milestone	M3.1	Anchored Pt/GMC catalyst with <30% ECSA loss after catalyst AST.	GM	Q9
3.1.1	Develop ordered intermetallic PtCo catalysts on down-selected support	Milestone	M3.2	Deliver >2g of ordered catalyst with mass activity >0.44 A/mg _{Pt} .	Pajarito/GM/C ornell	Q10
3.1.3 3.2.1	Catalyst, support and membrane AST on SOA MEA MEA post-mortem analysis	Milestone	M3.3	 MEA that achieves 1750h of 90 °C HAST testing Report on the Pt nanoparticle location before and after AST 	AII/FC-PAD	Q11
3.3.1 3.3.2	 MEA durability modeling and life-projections Deliver Final MEA with High Efficiency and Durability to DOE 	Milestone	M3.4	 Report on the MEA life projections using durability models Deliver six or more 50 cm2 MEAs to DOE 	GM/FC-PAD	Q12
Phase 3	Optimization for High Performance, Efficiency and Durability	Final Review	MA3	Deliver MEA with < 0.2 mg _{Pt} /cm ² _{cathode} , < 40% loss in mass activity, < 10% loss in power after 25000 hours based on fuel cell system model lifetime projection studies. The MEA will have BOL efficiency of 65% at 10% power and a rated power of >1.2 W/cm ² measured in a 50 cm ² active area cell.	All	Q12