

# Fuel Cell System Optimization for Rail and Maritime Applications

R. K. Ahluwalia, X. Wang, J-K Peng, and D. Papadias

# U.S. DOE Hydrogen and Fuel Cells Program 2020 Annual Merit Review and Peer Evaluation Meeting Washington, D.C. May 19 - 21, 2020

Project ID: FC329

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

## **Overview**

## Timeline

- Start date: Oct 2019
- End date: Open
- Percent complete: NA

## **Barriers (FC)**

- A. Durability
- B. Cost

C. Performance (System Thermal and Water Management, Air Management, Startup and Shut-down)

## Budget

- FY19 DOE Funding: 0
- Planned DOE FY20 Funding: \$300K
- Total DOE Funding Received: \$150K

## **Partners/Interactions**

- Caterpillar
- Cummins
- Wabtec
- Sandia National Laboratory

 This project analyzes configurations, performance and durability of heavy-duty fuel cell systems for rail (long-haul freight, regional and switcher locomotives) and maritime (feeder container ships, ferries and tugs) applications

#### **Objectives and Relevance**

Model and analyze configuration, performance and durability of heavy-duty fuel cell systems (HD-FCS) for rail (long-haul freight, regional and switcher locomotives) and maritime (feeder container ships, ferries and tugs) applications

- Optimize fuel cell system designs incorporating novel state-of-the-art materials and components, to achieve high efficiencies and lifetimes required for rail and marine applications
- Identify modular configurations for fuel cell systems that are scalable to MW sizes as needed in these applications
- Identify gaps and barriers. Recommend key research and development challenges for adoption of fuel cell technology in rail and marine applications
- Provide input to guide concurrent techno-economic analyses efforts

#### **Relevance**:

- HD-FCS for trucks, rail and maritime are relevant to the H2@Scale initiative as they can create a large-scale demand for H<sub>2</sub> and possible use (refueling) close to production site
- MW-scale diesel engines are highly developed, robust, and durable (34,000 MWh for freight locomotives, 25 years for maritime) with efficiencies exceeding 50%. HD-FCS must compete with them on performance basis
- Fuel cells and H<sub>2</sub> must also compete with the incumbent diesel technology on cost basis. This project provides inputs to the concurrent total-cost-of ownership (TCO) analyses;
- Opportunity for hydrogen and fuel cells: Tier 4 emission standards for locomotives and pending tighter EPA regulations for sulfur, NOx, CO and HC; pending IMO regulations for sulfur, NO<sub>x</sub> (and CO<sub>2</sub>) emissions in open seas

### **Milestones**

| Define and analyze configurations for<br>fuel cell systems as replacement for<br>Tier-4 diesel engines in long-haul<br>locomotives               | 12/31/2019 | Annual Milestone<br>(Regular) |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------|
| Define and analyze configurations for<br>fuel cell systems as replacement for<br>marine-gas oil and LNG combustion<br>engines in container ships | 3/31/2020  | Annual Milestone<br>(Regular) |
| Develop performance and durability<br>requirements for fuel cell systems for<br>long-haul locomotives                                            | 6/30/2020  | Annual Milestone<br>(Regular) |
| Develop performance and durability requirements for fuel cell systems for container ships                                                        | 9/30/2020  | Annual Milestone<br>(Regular) |

## 4,400 HP GE ET44AC Locomotive:

Meets Tier 4 emissions without any after-treatment



| Model                 | ET44AC       | ES44AC       |  |
|-----------------------|--------------|--------------|--|
| Wheel arrangement     | C-C          | C-C          |  |
| Length                | 74' 6"       | 73' 2"       |  |
| Weight                | 426,000 lbs  | 432,000 lbs  |  |
| Height                | 16' 1"       | 15' 5"       |  |
| Engine control system | GE CCA       | GE CCA       |  |
| Engine                | GEVO-12      | GEVO-12      |  |
| Number of cylinders   | 12           | 12           |  |
| Traction horsepower   | 4,400        | 4,400        |  |
| Traction alternator   | GMG205       | GMG205       |  |
| Traction motors       | GEB13        | GEB13        |  |
| Maximum speed         | 72 to 75 mph | 72 to 75 mph |  |
| Fuel capacity         | -            | 5,000 gals   |  |

### **Fuel Cell Locomotive: Concept Development**

FCS replaces the diesel engine and uses the existing electric drivetrain, bus bar and controls;  $LH_2$  is stored in a separate tender car



#### **Fuel Cell Locomotive: Performance**



Replacing diesel engine in an electromotive with FCS is made easier by the existing electric drive. Alternator and rectifier are replaced with a DC/DC converter, offering 2-3% gain in efficiency.



#### **Fuel Cell Locomotive: Modular Concept**

A fuel cell module (FCM) combines 10 fuel cell racks (FCR) to form a 3.2  $MW_e$  power system. FCM shares a common coolant circuit but the FCRs have separate air and H<sub>2</sub> systems. Possible to have the same 750 V DC link as in diesel-electric.



#### **Fuel Cell Locomotive: Rack Concept**

- A 320-kW<sub>e</sub> FCR consists of  $4x100 \text{ kW}_{e}$  stacks with common air and H<sub>2</sub> systems.
- Cathode: 0.25 mg/cm<sup>2</sup> Pt loading in a-Pt/HSAC; membrane: TBD; anode: TBD
- Air system with expander; anode system with recirculation blower
- Rated power: 2.5 atm, 87°C, 0.7 V
- Control valves for startup/shutdown, cold start and OCV control



#### Air Management for Fuel Cell Rack



A truck supercharger can serve as the air management system for FCR. At rated power, compressor consumes 45 kW; 25 kW<sub>e</sub> net parasitic CEM power

## **Fuel Cell Locomotive: Heat Rejection**

- ET/ES locomotives have radiators on the roof, and radiator fans underneath providing forced draft.
- Fuel cell locomotive thermal management is challenging because of lower operating temperatures, requiring 2X heat transfer area.
- Cryogenic H<sub>2</sub> from tender car absorbs 3% of waste heat and lowers the stack coolant temperature by 2-3°C





## **Diesel Powertrain for Feeder Container Ship**

#### Isla Bella LNG Container Ship

- Main Dimensions: 233(L)X32(W)X10(D)m
- Performance: 2100-TEU (36,571 T)
- Engine: 25-MW main, 3x1.75-MW auxiliary
- Service life: 25 years





## **Fuel Cell Electric Propulsion System**



**FCS Performance and Durability** 

- Fuel cells operating at lower temperatures have higher power density and better durability
- Systems designed with higher cell voltage have higher efficiency, higher initial cost, and lower durability



# Application of FCR and FCM Concepts to 440 kW<sub>e</sub> – 6 MW<sub>e</sub> Maritime Fuel Cell Systems for Ferries and Tugboats

## Waterborne Transportation Lines<sup>1</sup> of the U.S.

| U.S. Flagged Vessels by Type 2018 (9,310)      |                                                                                                             | U.S. Merchant Fleet                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2%_1%<br>18%<br>62%                            | <ul> <li>Dry Cargo</li> <li>Container</li> <li>Offshore Supply</li> <li>Ferries</li> <li>Tankers</li> </ul> | <ul> <li>A total of 9,310 self propelled vessels as of 2018</li> <li>Majority of fleet consists of towboats (62%)</li> <li>Push boats: 3,357 for barge movement (inland river system)</li> <li>Tugboats: 2,463 (pulling ships to dock)</li> <li>Total engine power by vessel type dominated by towboats (53%)</li> </ul> |  |  |
| 1%                                             | Towboats                                                                                                    | <ul> <li>~1,500 ferries in operation as of 2018. 119 million passengers and 25 million vehicles per year<sup>2</sup></li> <li>&gt; NY and WA top two states for passenger</li> </ul>                                                                                                                                     |  |  |
| Total Engine Power by Vessel Type (            | Engine Power by Vessel Type (~18,000 MW) boarding (60%)                                                     |                                                                                                                                                                                                                                                                                                                          |  |  |
| (18%)<br>(12%) <b>3,215</b> (9%)               | (53%)<br>9,474                                                                                              | <ul> <li>WA top state for vehicle boarding (45%)</li> <li>Farm Products<br/>Manuf. Goods<br/>Ore &amp; Scrap<br/>Sand,Gravel<br/>Chemical<br/>Petroleum<br/>Coal</li> </ul>                                                                                                                                              |  |  |
| 2,181 1,608                                    | 671                                                                                                         | 0 20 40 60 80 100 120 140<br>Annual Trade, short tons                                                                                                                                                                                                                                                                    |  |  |
| Dry Cargo Container Offshore Ferries<br>Supply | Tankers Towboats                                                                                            | river). Petroleum and Coal main trade (46%) followed by farm products (19%)                                                                                                                                                                                                                                              |  |  |

<sup>1</sup>Source: U.S. Army Corps of Engineers. Excludes fishing and recreational vessels <sup>2</sup>Source: National Census of Ferry Operators

#### **Duty Cycles – RoPax Ferry**

\_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_ \_



Mid-size RoPax Ferry Cars: 124-150, Passengers:1,500



Small RoPax Ferry Cars: 16-28, Passengers:100-150

Whatcom scenario applied for a 22 car ferry (150 pax) as potential upgrade of Whatcom Chief<sup>1</sup>

| Ferry Line<br>County    | Bremerton-Seattle<br>Kitsap, WA | Washington Island<br>Door, WI | Washington Island<br>Door, WI | Washington Island<br>Door County, WI | Lummi Island<br>Whatcom, WA |
|-------------------------|---------------------------------|-------------------------------|-------------------------------|--------------------------------------|-----------------------------|
| Name                    | MV Tokitae                      | Arni J. Richter               | Robert Noble                  | Washington                           | Whatcom Chief               |
| Length (m)              | 110.0                           | 31.7                          | 27.4                          | 30.4                                 | 30.4                        |
| Beam (m)                | 25.4                            | 11.6                          | 10.9                          | 11.2                                 | 13.4                        |
| Draft (m)               | 5.5                             | 3.0                           | 2.4                           | 2.7                                  | 3.3                         |
| Gross Tonnage           | N/S                             | 92                            | 97                            | 82                                   | 129                         |
| Propulsion              | 2xMTU                           | 2 CAT 3508B                   | 2 CAT C18                     | 2 CAT C18                            | 2 Engines                   |
| Engine Rated Power (kW) | 2250                            | 750                           | 341                           | 365                                  | 180                         |
| Generator Capacity (kW) | 4x300                           | N/S                           | N/S                           | N/S                                  | 2x35                        |
| Capacity - Cars         | 144                             | 18                            | 19                            | 21                                   | 16                          |
| Capacity - Passengers   | 1,500                           | 149                           | 149                           | 149                                  | 100                         |
| One way trip time (min) | 80                              | 30                            | 30                            | 30                                   | 15                          |
| N/S: Not Specified      |                                 | 1                             |                               |                                      |                             |





Duty Cycle % of Time



#### Small RoPax Ferry: Annualized Cost of FCS and Hydrogen

#### 440 kW<sub>e</sub> FCS, 70 kW<sub>e</sub> Auxiliary Load

Duty cycle consistently has loads above 40%: 44% loading; 58% departure; 92% transit; 58% arrival; 44% unloading

- Voltage Clipping 1 (VC-1), the highest efficiency mode of operation, is not applicable, i.e., same as LF
- Small efficiency penalty with VC-2, the highest durability mode of operation, 30,000-h, except for FCS with 0.75 V at rated power
- Small difference in annualized cost for LF and VC-2: saving in capital cost offset by up to 3,000 \$/year higher fuel cost
- TCO smallest for FCS sized for 0.75 V at rated power, 16,000 \$/year saving compared to FCS sized for 0.6-V at rated power
- Future work: discrete stack sizes, sustainable manufacturing volume



#### Medium-Sized RoPax Ferry: Annualized Cost of FCS and Hydrogen

#### 5.54 MW<sub>e</sub> FCS, 900 kW<sub>e</sub> Auxiliary Load

Duty cycle consistently has loads above 25%: 25% loading; 36% departure; 92% transit; 36% arrival; 44% unloading

- Voltage Clipping 1 (VC-1), the highest efficiency mode of operation, is not applicable, i.e., same as LF
- Small efficiency penalty with VC-2, the highest durability mode of operation (30,000-h)
- Annualized saving with VC-2 compared to LF operating mode: 10,000-50,000 \$/year.
- TCO smallest for FCS sized for 0.75 V at rated power, 400,000 \$/year saving compared to FCS sized for 0.6 V at rated power



#### **Duty Cycles – High Speed Ferry**



| Туре                        | High Speed Passenger Ferry |
|-----------------------------|----------------------------|
| Length (m)                  | 42.9                       |
| Breadth (m)                 | 10.5                       |
| Draught (m)                 | 2.0                        |
| Service Speed (knots)       | 38                         |
| Maximum Speed (knots)       | 42                         |
| Total Propulsion Power (kW) | 5,625                      |
| Engine                      | MTU 16V4000                |
| Number of Engines           | 2                          |
| Engine Rated Power (kW)     | 3,440                      |
| Aux. Power (kW)             | 190                        |
| Distance (nm)               | 18                         |
| Trip Duration (min)         | 60                         |
| Passengers                  | 600                        |



Duty cycle similar to ISO E5 cycle for ferries (emissions test)



Duty cycle matches range and time for trip

#### High-Speed Passenger Ferry: Annualized Cost of FCS and Hydrogen

#### 6.13 MW<sub>e</sub> FCS, 190 kW<sub>e</sub> Auxiliary Load

Duty cycle: 15% idle; 27% maneuvering; 49% precautionary; 84% slow cruise; 98% full cruise

- Up to 1% point efficiency gain with VC-1 mode of operation
- Lowest cost option for LF: FCS sized for 0.7 V at rated power
- Lowest cost option for VC-1: FCS sized for 0.7 V at rated power
- Annualized costs for VC-2<VC-1<LF: costs dominated by fuel cost but lowest for operating mode with smallest annualized stack cost (longest life)
- TCO smallest for VC-2 with FCS sized for 0.75 V at rated power, 130,000 \$/year saving compared to FCS sized for 0.6-V at rated power



#### Duty Cycles<sup>1</sup> – Tugboats

Ocean-going Tug



#### Harbor Tug

<sup>1</sup>Boyd, E. and Macperson, D. Using Detailed Vessel Operating Data to Identify Energy-Saving Strategies, ITS 2014, Germany

#### Harbor Tug: Annualized Cost of FCS and Hydrogen

#### 3.8 $\mathrm{MW}_{\mathrm{e}}$ FCS, 200 kW\_{\mathrm{e}} Auxiliary Load

Duty cycle: 15% idle; 7-30% transit; 20-80% towpull

- Up to 2% point efficiency gain with VC-1 mode of operation
- Lowest cost option for LF: FCS sized for 0.65 V at rated power
- Lowest cost option for VC-1: FCS sized for 0.6-0.65 V at rated power
- Lowest cost option for VC-2: FCS sized for 0.7 V at rated power

Annualized costs for VC-2<VC-1<LF

- LF: Fuel cost ~ annualized FCS cost
- VC-1: Fuel cost > annualized FCS cost
- VC-2: Fuel cost >> annualized FCS cost
- TCO smallest for VC-2 with FCS sized for 0.7 V at rated power, 420,000 \$/year saving compared to LF, 100,000 \$/year saving compared to VC-1



## **1. Fuel Cell Systems for Rail**

- Formulated a concept of heavy-duty fuel cell racks (FCR), nominally 320-kW<sub>e</sub> for 0.7 V cell voltage at rated power. A FCR consisting of 4x100 kW<sub>e</sub> stacks, and common air and fuel management systems. The stacks can be standardized for deployment in different heavy-duty applications such as rail and maritime.
- Formulated a concept of combining FCRs to build larger fuel cell modules (FCM), e. g., a 3.2  $MW_e$  FCS for freight trains.
- Investigated the issue of thermal management and showed the need to enlarge the radiator heat transfer area by 50-100%.

### 2. Fuel Cell Systems for Maritime

- Applied the concept of heavy-duty FCRs and FCMs to maritime applications, including a 25 MW<sub>e</sub> system for small container ships, and electrification of the propulsion system.
- Developed models for performance, durability and cost of fuel cell systems with different cell voltages at rated power.

# **3.** Applications of FCR and FCM Concepts to 440 kW<sub>e</sub> – 6 MW<sub>e</sub> Maritime FCS for Ferries and Tugboats

- Proposed operational concepts for load following (LF), voltage clipping for maximum efficiency (VC-1) and voltage clipping for maximum lifetime (VC-2)
- Determined the best operational method and stack size (cell voltage at rated power) for least annualized fuel and FCS cost.

#### **1. Heavy-Duty Fuel Cell Stacks and Systems**

 Further develop the concept of standardized stacks for use in fuel cell racks (FCR) and fuel cell modules (FCM)

## 2. Fuel Cell Systems for Rail

 Investigate heat rejection, performance, durability and cost of fuel cell systems for passenger trains, yard switchers and freights.

#### 2. Fuel Cell Systems for Maritime

 Investigate performance, durability and cost of fuel cell systems for ferries, tugboats and small container ships.

## **3.** Applications of FCR and FCM Concepts to TCO Studies

- Collaborate with the on-going projects on TCO of fuel cell rail applications
- Collaborate with the on-going projects on TCO of fuel cell maritime applications

# **Backup Slides**

#### **Cooling of Ship's Slow-speed Diesel Engine-1**

- Two separate systems: one for cooling the cylinder jackets, cylinder heads and turbo-blowers; the other for piston cooling. Both have a sea-water-circulated cooler.
- The hot cylinder jacket cooling water: 1) for cylinder jackets, cylinder heads and turbo-blowers; 2) a header tank allows for expansion and water make-up in the system; 3) A heater for warming of the engine prior.
- The piston cooling system: 1) limit any contamination from piston cooling glands within the system only; 2) a drain tank; 3) the vents led to high points in the machinery space.
- Turbo blower pressure: 2 atm



#### **Cooling of Ship's Slow-speed Diesel Engine-1**

- Two separate systems: one for cooling the cylinder jackets, cylinder heads and turbo-blowers; the other for piston cooling. Both have a sea-water-circulated cooler.
- The hot cylinder jacket cooling water: 1) for cylinder jackets, cylinder heads and turbo-blowers; 2) a header tank allows for expansion and water make-up in the system; 3) A heater for warming of the engine prior.
- The piston cooling system: 1) limit any contamination from piston cooling glands within the system only; 2) a drain tank; 3) the vents led to high points in the machinery space.
- Turbo blower pressure: 2 atm



#### **FCS for Maritime: System Efficiencies**



#### **MAN Diesel**

- Shaft Power: 49.3%
- Coolant Load: 24.6%
   Air Cooler 16.5%
   Jacket water cooler 5.2%
   Lubricating oil cooler 2.9%

