

Savannah River National Laboratory®

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Hybrid Electrical/Thermal Hydrogen Production Process Integrated with a Molten Salt Reactor Nuclear Power Plant

Savannah River National Laboratory : Elise B. Fox, Hector Colon-Mercado, Maximilian B. Gorensek, A. Boone Thompson

Sandia National Laboratory: Cy Fujimoto

Southern Company: Noah Meeks

Project ID: H2026

PROJECT OVERVIEW	RELEVANCE TO H2@SCALE		APPROACH
TIMELINE: Start: July 1, 2018 End: Sept. 30, 2020	 The Hybrid Sulfur (HyS) Hydrogen 	Conventional Storage	 THIS PROGRAM WILL: System Analysis Develop a plausible path to hydrogen production cost
TOTAL CENTER FUNDING: DOE Share: \$600K Cost Share: \$823K DOE Share Expended: \$510K	Generation process has the potential to produce	Renewables Nuclear Nuclear Nuclear	less than \$2/kgH ₂ based on the process design and cost estimation. - Develop a conceptual plant design for MSR-HyS - Develop a techno-economic analysis of H ₂ production

BARRIERS:

A. Hydrogen Levelized Cost **B.** System Energy Efficiency **C.** Total Capital Investment

PARTNERS:

hydrogen gas using both thermal and electrical energy at a cost of <\$2/kg.

- HyS can utilize thermal energy from a molten salt reactor (MSR) along with renewable electrical energy from either wind or solar generation to efficiently produce hydrogen.
- The HyS process, being a two step process, can act as a buffer and store thermal energy chemically as liquid SO₂, to be used to generate hydrogen as required to minimize generation and storage costs.

via MSR-HyS

MEA Development

- Develop an SDAPP membrane composition showing better ion conductivity than Nafion[®]112 in 6 M sulfuric acid.

- Develop electro-catalyst that show a 20mV performance improvement over Pt/C in 3.5M sulfuric acid solution containing dissolved sulfur dioxide or sodium sulfite

- Demonstrate performance of at least 100mV lower cell voltage than Nafion[®] of an MEA using higher temperature membranes and improved catalysts.

HyS CHEMISTRY

- Hybrid Sulfur (HyS) is a two-step thermo-chemical cycle based on sulfur oxidation/reduction
- Key Reaction Step is electro-chemical water splitting using an SO₂ depolarized electrolyzer (SDE).
- All fluid processing minimizes entropic losses due to phase changes
- HyS is "hybrid" cycle requiring both electrical and thermal energy input
- Optimization of the system requires trade-offs between the various components

INTEGRATION WITH MOLTON SALT REACTOR

MEMBRANE ELECTRODE ASSEMBLY (MEA)

HyS Process $H_2SO_4 \rightarrow H_2O + SO_2 + \frac{1}{2}O_2$ Thermochemical: 600-900°C **Electrochemical:** 0.17 v_{th} @ 80-140°C $SO_2 + 2H_2O \leftrightarrow H_2SO_4 + H_2$ $H_2O \rightarrow H_2 + \frac{1}{2}O_2$ Net Reaction vs. Low Temperature Electrochemical $H_2O \rightarrow H_2 + \frac{1}{2}O_2$ Electrochemical: 1.23 v_{th}

Integration of Hydrogen Generation with an Integral Salt Reactor IMSR®

in potential after 700 hrs. operation.

Kinetics (catalyst)	Call registeres (membrane)
	Cen resistance (membrane)
Operating temperature	
	temperature
♦ ↑ Intrinsic	♦ ↑ ionic
higher activity	conductivity

MEMBRANE DEVELOPMENT

- Improve ionic conductivity and stability at high acid concentrations and temperatures
- Prevent sulfur formation at the cathode - Limit or eliminate formation H₂S and SO₂ reactants*
- Utilize membranes with low SO₂ permeability
- Developed SDAPP membranes with alternate acid concentrations to optimize MEA performance

EX-SITU CATALYST TESTING

Scanning droplet system (SDS) probe for irreversible redox

- Cyclic voltammetry studies on SDS show trends in activity:
 - Au>>Pt at high potential (kinetic
 - Au>~ Pt at low potential (activation region)

voltammetry results

Au at% (bal Pt)

TECHNOECONOMIC ANALYSIS

PROPOSED FUTURE WORK

SUMMARY

 Given projected performance of IMSR® and HyS process, production cost estimated to be 2.55 $kg H_2$.

- 650°C upper limit major hurdle
- Path to \$1.93\$/kg H₂ identified
 - Requires 25% reduction in heat, power cost
- Conceptual plant design based on s-PBI MEA SDE
 - Being updated for SDAPP MEA
 - Wet cathode for SDAPP MEA alters flowsheet, energy balance
- TEA for H₂ production via MSR-HyS
 - Previous TEA being updated for SDAPP MEA
 - More flexible SDE performance targets

- Evaluate electrolyzer performance at process relevant conditions
- Evaluate electrolyzer performance under pressure
- Incorporate Au based catalyst into catalyst layer
- Explore ternary alloys of PtAuM (M = transition metal) via combinatorial sputter deposition
- e.g. V used industrially in H_2SO_4 production
- Identify combinations of cell potential, current density, and acid concentration that will achieve specific production cost targets

The HyS process could add value to nuclear generation and serve as an energy storage mechanism for concentrating solar

- Thermal energy can be used most effectively through hybrid thermo-chemical/electro-chemical process.
- HyS process utilizes 78% thermal energy and 22% electrical energy with ability to store SO_2 or H_2SO_4 indefinitely as required.

Electro-chemical step key to efficient SO₂ oxidation

- Potential high temperature membrane with minimal SO₂ permeation identified as SPP which needs to be optimized for SO_2/SO_3 environment.
- Potential $Pt_xAu_vV_z$ alloy catalyst identified to greatly reduce required cell potential and needs further investigation.

SRNL is a U.S. Department of Energy National Laboratory operated by Savannah River Nuclear Solutions.