

Self-healable Copolymer Composites for Extended Service H₂ Dispensing Hoses

Dr. Marek W. Urban Department of Materials Science and Engineering Clemson University May 2020

Project ID #IN020

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline and Budget

• Project Start Date: 01/2020

- Project End Date: 12/2022
- FY2020: \$540,853
- Total Project Budget: \$1,250,000
 - Total Recipient Share: \$250,000
 - Total Federal Share: \$1,000,000
 - Total DOE Funds Spent*: \$91,140

* As of 05/30/2020: \$91,140

Barriers

- Barriers addressed
 - developing a H₂ delivery green house infrastructure
 - developing innovative process technologies that will reduce H₂
 fueling costs
 - Determine applicability and cost effectiveness of commodity selfhealable copolymer composites in H₂ delivery systems
 - Reduced cost of production by minimizing rates of H₂ leaking
 - Develop materials-based system strategies to meet and exceed target refill cycles in H₂ dispensing hoses

Partners

- Savanah River National Labs
- Project leads: Dr. Charles (Will) James; Dr. Dale Hitchcock

When micro-cracks develop around 1000 fill cycles, self-healing will occur in an inner layer of a dispense hose.

The objective is to demonstrate that over 25,000 cycles can be obtained thus increasing sustainability of H_2 dispense hoses.

Relevance

Objectives

- Design, development, and testing of a new generation of commodity self-healable copolymers and composites for the inner core of a H_2 dispensing hose to extend the hose service life
- Development of new knowledge and experimental methods that will impact other energy-related technologies

Key Milestones & Deliverables

- Year 1: Develop commodity copolymers with self-healing properties that undergo damage-repair cycle
- Year 2: Develop commodity composites with self-healing properties that undergo damage-repair cycle
- Year 3: Develop and optimize self-healing composite hoses to extend the H_2 hose service life beyond the current target of 1000 fills.

Approach/Milestone Q1

Date	Milestone/Deliverables	Complete
01/30/20	Development of Project Management Plan	100%
02/15/20	Development of Collaborative Path with SRNL	100%
03/31/20	Copolymerization of Copolymers	100 %
03/31/20	Characterization of Copolymers	100%
03/31/20	Copolymer Characteristics and Self-healing Properties	100%
03/31/20	Copolymer requirements and specifications	100%

Approach

- Urban Research Growf
- Copolymerize commodity p(A/B) copolymers that exhibit self-healing attributes
- Develop and test self-healing properties of fiberreinforced p(A/B) copolymers by Innegra[™] fibers
- Conduct molecular dynamic simulations to optimize copolymerization to achieve desirable self-healable structural features.
- Develop and test prototypes of an inner layer hose to achieve > 25,000 refill cycles

Accomplishments and Progress

The following self-healable copolymers were developed using three polymerization methods: atom transfer radical polymerization (ATRP), colloidal, and statistical copolymerization.

Monomer	Copolymer	Copolymerization Method	Molar Feed Ratio (f)	Actual Molar Ratio (F)	M _n (Da)	M _w (Da)	Ð	T _g (K)	Self Healing
	p(A/B)	ATRP	<mark>50/50</mark>	51/49	19359	23395	1.21	278	<mark>+</mark>
A			<mark>45/55</mark>	44/56	27532	36908	1.34	269	+
В		Colloidal	<mark>50/50</mark>	*	159000	774000		268	<mark>+</mark>
			<mark>45/55</mark>	*	>1000000	ultrahigh		253	٠
		Statistical	<mark>50/50</mark>	53/47	44603	86518	1.94	283	+
			<mark>45/55</mark>	46/54	68962	163493	2.37	272	<mark>+</mark>

Summary of f, F, M_n, M_w, Đ, and T_g values for self-healable compositions of p(A/B) copolymers within 45/55 to 55/45 molar A/B monomer ratios prepared by atom transfer radical polymerization (ATRP), colloidal, and statistical copolymerization. "*", "---" due to ultra-high molecular F values could not be determined. "+" denotes self-healability

Optical images of self-healing of p(A/B) copolymer films. Optical images of damaged p(A/B) copolymers with the A/B molar ratio of ~50/50. Copolymers were allowed to repair under ambient conditions.

Summary of requirements and specifications for p(A/B) copolymers to be used in the development of H₂ dispense hoses: f, F, M_n, M_w, Đ, T_g, and self-healing efficiency. Yellow shaded fields indicate work in progress. The values for E (MPa), ϵ_{max} (%), ϵ_{max} (14hrs) (%), σ_{break} (MPa), and σ_{break} (14 hrs) (MPa) will be reported in subsequent quarterly reports.

-		Molar Feed Ratio (f)	Actual Molar Ratio (F)	Mn (Da)	M _w (Da)	Ð	Tg (K) Self Healing	Mechanical Properties					
Monomer	Copolymer							Self Healing	E (MPa)	£max (%)	ε _{max} (14hrs) (%)	σ _{break} (MPa)	σ _{break} (14 hrs) (MPa)
А	p(A/P)	40/60	37/63	32607	75966	2.33	248	-					
		45/55	46/54	68962	163493	2.37	272	+					
В	р(А/Б)	50/50	53/47	44603	86518	1.94	283	+					
		55/45	57/47	45801	120029	2.62	300	-					σ _{break} (14 hrs) (MPa)

Accomplishments and Progress

We copolymerized and identified p(A/B) copolymer compositions that exhibit self-healable properties. The following properties were determined: f, F, M_n, M_w, (Đ), and T_g.

Optical image analysis showed that the optimum monomer A/B molar ratios are 45/55 to achieve self-healing properties.

p(A/B) copolymers are in the process of being characterized and the following mechanical properties will be determined: E (MPa), ϵ_{max} (%), ϵ_{max} (14hrs) (%), σ_{break} (MPa) and σ_{break} (14 hrs) (MPa).

Spectroscopic analysis is being performed (FTIR, NMR) to be used for structural fine tuning abnd input to simulations.

Accomplishments and Progress:

• This project was initiated in FY20 and was not reviewed last year.

Collaboration and Coordination

The proposed project aims to develop self-healable commodity copolymer composites for an inner core of a H_2 dispensing hose to extend the hose service life cycles. These materials are being developed by the Clemson Team H_2 testing is performed at Savanah River National Labs (SRNL). The results of SRNL tests will be fed back to the Clemson Team for fine tuning of self-healing properties.

During this period two sets of p(A/B) copolymer films were sent to Savanah River National Labs for initial H₂ permeability studies.

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

SRNL Project Leads: Dr. Charles (Will) James Dr. Dale Hitchcock

- Critical GO/No GO challenge in this project was accomplished: selfhealable p(A/B) copolymers were developed.
- Current and Future Challenges:

Personnel:

- Difficulty hiring new personnel due to COVIT-19 (hiring freeze). <u>Technical:</u>
- Shorten self-healing times in ultra-high molecular weight copolymers.
- Control of the degree of alternating/random copolymer structural content.
- Control self-healing of fiber-reinforced p(A/B) copolymer composites.
- Fatigue and durability analysis of composites.
- Mechanical and spectroscopic analysis of fiber-reinforced copolymer composites containing F-copolymers.
- Cost-performance analysis.
- Demonstrate and test prototypes of an inner layer H₂ hose achieving > 25,000 refill cycles.
- Identify private sector which would commercialize these technologies.

Proposed Future Work

- Polymerization of ultra-high high molecular weight copolymer compositions capable of self-healing for the use in H₂ services. This is critical in achieving desirable mechanical properties.
- Control of copolymer compositions will be essential to achieve repetitive self-healing of p(A/B) copolymers, fiber-reinforced copolymers, and F-containing p(A/B) copolymers.

UPCOMING MILESTONES

- Preliminary cost-performance model will be developed which will include all key cost drivers. Draft T2M will be developed.
- Each copolymer will be characterized using spectroscopic and mechanical testing methods.
- Copolymers will be characterized and identified for composite development.

Proposed Future Work

- MD simulations will be conducted and used for fine tuning of copolymer compositions and H_2 and H_2O permeability. The latter will be used to predict the role of these molecules on self-healing properties in H_2 dispense hose actual working environments.
- Cost-performance studies will be conducted with assistance of Clemson University Research Foundation (CURF).
- Fatigue analysis will be conducted as a function of copolymer compositions in fiber-reinforced and F-containing p(A/B) copolymers.

Robotic device will be used to mimic fatigue of interior section of H_2 dispensing hoses

Technology Transfer Activities

Technology Impact

- A new generation of commodity self-healable copolymers and composites will be developed using commodity starting materials
- Low cost self-healing materials for many energy-related applications will lead to new technological opportunities in the US.

T2M Plans

- Initiated work with the Clemson University Research Foundation (CURF) to develop the commercialization plan.
- CURF will assist the team in disclosure and reporting of IP, evaluations of commercial opportunities (PatSnap software), protect through patenting, and find opportunities for further development through sponsored research and/or licensing.
- Plans are being developed for future commercialization as well as marketing strategies.

Summary

- Commodity copolymers p(A/B) with self-healable properties were identified, developed, and tested.
- Target copolymer compositions were identified and developed using three copolymerization methods.
- Most suitable monomer ratios were identified and copolymers with alternating/random distribution of monomers exhibit selfhealing properties.
- Collaborative efforts with SRNL have been established.
- Commercialization plans between the Clemson Team and CURF are progressing.