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DESIGNING OUR FUTURE
ENERGY SYSTEMS

What goals are we trying to achieve?

How will energy be used?

What role(s) will nuclear fill?



INNOVATIVE NUCLEAR TECHNOLOGIES
FOR
CURRENT AND FUTURE ENERGY SYSTEMS
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ADVANCED REACTORS

Benefits:

 Enhanced safety

* Versatile applications
* Reduced waste

* Apply advanced

manufacturing to reduce
costs

SMALL MEDIUM LARGE
1 MW to 20 MW 20 MW to 300 MW 300 MW to 1,000 + MW
Micro-reactors Small Modular Reactors Full-size Reactors
Can fit on a flatbed truck. Factory-built. Can be Can provide reliable,
Mobile. Deployable. Scaled up by adding emissions-free baseload
more units. power

Advanced Reactors Supported by the U.S. Department of Energy
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A4 &

MOLTEN SALT REACTORS - LIQUID METAL FAST REACTORS - GAS-COOLED REACTORS -
Use molten fluoride or Use liquid metal (sodium or lead) Use flowing gas as a coolant.
chloride salts as a coolant. as a coolant. Operate at higher Operate at high temperatures
Online fuel processing. Can temperatures and lower pressures. to efficiently produce heat for
re-use and consume spent fuel Can re-use and consume spent fuel electric and non-electric

from other reactors. from other reactors. applications.



Integrated Nuclear Energy Systems
will be dynamic and flexible
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INTEGRATED ENERGY SYSTEMS

Maximizing the contribution of carbon-free energy generation for electricity, industry, and transportation — while
supporting a resilient grid and converting valuable resources to higher value products



Integrated Energy Systems: A Key Opportunity for Nuclear Energy

Today Potential Future Energy System
Electricity-only focus Integrated grid system that leverages contributions from nuclear
' fission beyond electricity sector
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Cross-cutting Energy System Modeling, Analysis, and Evaluation

Graded approach to identify design, and
evaluate hybrid system architectures

Aspen Plus® and HYSYS® Modelica®, RAVEN
Process Models Aspen Dynamics® (INL System Optimization)
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System modeling
addresses whole-system
coordination
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Process modeling addresses
technical and economic
value proposition

Dynamic modeling addresses
technical and control
feasibility

7



INL Experimental Demonstration of Integrated Systems

INL Dynamic Energy Transport and Integration Laboratory (DETAIL)

Establishing the experimental capability to demonstrate coordinated, controlled, and efficient transient
distribution of electricity and heat for power generation, storage, and industrial end uses.

Data Links to DETAIL Components and Unit Operations:
System-Level Controller to Unit-Level Controllers
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INL Experimental Demonstration of Integrated Systems

INL Dynamic Energy Transport and Integration Laboratory (DETAIL)

Establishing the experimental capability to demonstrate coordinated, controlled, and efficient transient
distribution of electricity and heat for power generation, storage, and industrial end uses
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Coordinated Energy Systems

Holistic Integration of the
energy system

Involve electrical, thermal, and
chemical networks

Utilize energy storage on
various scales

Provide reliable, sustainable,
low-emissions, most affordable
energy

Tightly Coupled Hybrid Systems

Involve thermal, electrical, and
process intermediates
integration

More complex than co-
generation, poly-generation, or
combined heat and power
May exploit the economics of
coordinated energy systems
May provide grid services
through demand response
(import or export)

Power Transactions with Grid

Electricity Grid

Electricity Storage

Giga-Watt Batteries
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Recent Hydrogen Production Analyses for Current Fleet LWRs

INL issued public-facing reports on in FY19 that provide the foundation for demonstration of using LWRs to
produce non-electric products:

« Evaluation of Hydrogen Production Feasibility for a
Light Water Reactor in the Midwest
Repurposing existing Exelon plant for H2 production via
high temperature electrolysis; use of produced
hydrogen for multiple off-take industries (ammonia and ) Natural Gos
fertilizer production, steel manufacturing, and fuel cells)
(INL/EXT-19-55395) o ,,> IES
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Hydrogen

» Evaluation of Non-electric Market Options for a
Light-water Reactor in the Midwest
LWR market opportunities for LWRs with a focus on H2
production using low-temperature and high-temperature =H2@Scale is a complementary, collaborating program
electrolysis; initial look at polymers, chemicals, and supported by the DOE Energy Efficiency & Renewable

Energy Fuel Cell Technologies Office.
synfuels (INL/EXT-19-55090)
LWRS._£ 0 et
,//&_--_\-—-—"
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https://www.osti.gov/biblio/1569271-evaluation-hydrogen-production-feasibility-light-water-reactor-midwest
https://www.osti.gov/biblio/1559965-evaluation-non-electric-market-options-light-water-reactor-midwest

Light Water Nuclear Reactor with HTE
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REACTOR
SUSTAINABILITY

INL Preliminary
Process Design
Reference
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J

Electricity from
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separations
processes in
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Nuclear Power Plant Hydrogen Production Demonstration Projects

e Purpose & Scope * Project Funding

1. Demonstrate hydrogen production using direct electrical Exelon: $8 M, EERE Fuel Cell Technology Office & NE Crosscutting
power offtake from a nuclear power plant for a commercial, Technology Integrated Energy System Program cost-shared joint funding

1-3 MWe, low-temperature (PEM) electrolysis module Energy Harbor Partnership: $12.5 million, Light Water Reactor
Sustainability Program cost shared; includes $1.6 M for Xcel Energy and APS

2. Acquaint NPP operators with monitoring and controls techno-economic assessments, with FCTO H2@Scale Analysis support

procedures and methods for scaleup to large commercial-

scale hydrogen plants . Project Schedule

: 6 months — project planning, PEM provider due diligence, procurement/joint
3. Evaluate power offtake dynamics on NPP power research agreements

transmission stations to avoid NPP flexible operations 6 months — Exelon: Select nuclear plant for demonstration

4. Evaluate power inverter control response to provide grid 6-18 months — electrical tie-in engineering, site preparation, PEM module

contingency (inertia and frequency stability), ramping Tgagifﬁ%ﬂ'ﬁ? fgffé’éﬂ?ggfqmﬁég |%nstti?]gg;rr]%err]%?gge%psel:gg)l;training

reserves, and volt/reactive control reserve 24-30 months — Energy Harbor: Commence testing and hydrogen supply
5. Produce hydrogen for captive use by NPPs

Example Test for Non-Spinning Reserve: Electrolyzer ™'
6. Produce hydrogen for first movers of clean hydrogen; fuel- ramps down in 10 mins while NPP dispatches electricity electrolysis
cell buses, heavy-duty trucks, forklifts, and industrial users to the grid; plant load
. = Exal Site for demonstration then returns profile

® Two projects: (1) Exelon, (2) Energy Harbor Xelon. - der consideration to full load

Partnership with Xcel Energy and APS afterone " S

: energy - — 7 .. S— hOUf, Dispatch C.)ne Hou;]Reserve .

e INL and NREL role: support utilities with project test lylelaCteIgy  Davis-Bess Plaft in Ofio_| NPP dispatches to gird

planning, coqtrols and mgnitoring enviropment @ XcelEnergy~ § e

implementation and testing, data collection, systems : o % >

performance evaluation, and project reporting. (% \
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Water Splitting and Power Thermodynamics
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Electrolysis Efficiencies vs Nuclear Reactor Type

Electrolysis Over Thermal Energy
T-Out Power Carnot o .
Reactor Type (Celsius) Power Cycle cvele Eff Eff Electricity Efficiency for H2
Y . ' (kWh/kg-H,) Production

N/A Rankine 32% 50% 39 (PEM) 26%
300 Rankine 32% 50% 32 (HTSE) 38%

Sodium Fast Supercritical o o 0
500 Rankine 44% 63% 30 (HTSE) 54%

Advanced High
Temp Reactor
(AHTR) 700 Sup-crit. CO, 50% 70% 29.5 (HTSE) 62%
(Molten Salt
Reactor, MSR)
Very High Temp

: . . )
Reactor (VHTR) 900 Air Brayton 56% 75% 29 (HTSE) 70%

Thermal efficiency gain; LWR-PEM vs VHTR-HTSE = 169 %




Flexible Plant Operations & Generation Timeline to Bolster U.S.

Nuclear Reactors

2025 2026 - 2030

> Opportunity:
Several reactors
producing:
e 2-5 MMT H,/yr
* 2-4 MMT Ethylene/yr

* 5 GWt heat delivery to
industrial parks

2019 | 2020 2021 2022 2023 2024

Techno/Economic Assessments Case Specific TEAs for Additional
Holistic Systems Evaluations LWRS

5 { PRA: H, & Thermal Systems > PRA: Chemical Plants & Fuels Synthesis

Interface Development & Verification

3: > » 20-30 Reactors
_ 200 - 500 MWe Plants > GWe Plants >
250 kWe HTE Demos 1—-10 HTE MWe Plants 50-100 MWe Plants > GWe Plants >
4. ~ > 500 MW Thermal Integration >
Fuels Synthesis Demos > Scale-up to Market Potential >
Electrochemical Polymers> 500 - 1,000 MWe Plants >




« Objective: The GAIN Clean Nuclear Energy for Industry Webinar Series highlights the innovations in
nuclear energy and associated integrated-energy options that may be beneficial to a wide range of industrial
energy applications. The intent is to develop connections between the nuclear community and the energy end-
use community to communicate the benefits of clean, reliable, and resilient nuclear energy.

« Part 1: Introduction (April 16, 2020)
» Part 2: Advanced Nuclear Technologies (May 29, 2020)
« Part 3: The Case for SMRs and Microreactors in Puerto Rico (June 18, 2020)

 Visit https://gain.inl.gov/SitePages/GAINWebinarSeries.aspx to view previous webinars in this series and to
register for upcoming webinars.

25 IES
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https://gain.inl.gov/SitePages/GAINWebinarSeries.aspx
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What might the future
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Image courtesy of GAIN and ThirdWay, inspired by Nuclear
Energy Reimagined concept led by INL.

Download this and other energy park concept images at:

https://www.flickr.com/photos/thirdwaythinktank/sets/721576653728
89289/
19



For more information, contact:
Shannon.Bragg-Sitton@inl.gov
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