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A Advanced Water-Splitting Materials (AWSM)
‘1' Relevance, Overall Objective, and Impact

=~ Sandia
BN eaiNINEE L National
AWSM Consortium ﬁl‘ @ S L
6 Core Labs:
." H Lawrence Livermore s RN L

) National Laboratory
Idaho Nafional laboratory

Accelerating R&D of innovative materials critical to advanced water splitting
technologies for clean, sustainable & low cost H, production, including:

Production
Photoelectrochemical target <$2/kg
A (PEC)
’ —) 4
& Solar Thermochemical
S S Hydrogen

Water

High- and Low-Temperature
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&» Relevance — Impact on LTE Technology

/" PEM I

« Gas Crossover
* Membranes

« Catalyst
Materials

« Catalyst
Loading

\- PTL Materials/

/" AEM I

Membranes
Catalyst
lonomer

Electrolyte
feed required?

BOP Materials

/

(Common Barriers
* Material Integration
 Material Cost

\_ * Understanding Interfaces and Interactions )

~
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BOP - Balance of Plant

PTL — Porous Transport Layers
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t.?) Approach — HydroGEN EMN
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& Approach — HydroGEN EMN

Low Temperature Electrolysis (LTE)
* Proton Exchange Membrane (PEM)
 Alkaline Exchange Membrane (AEM)
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A, Accomplishments and Progress:
3x Seedling Projects Added to LTE Activities

Georgia Tech

LANL Project

(PD185)
PI: P. Kohl NEU Project PI('I:YD; slizm
Engineering Durable Low S
Cost AEM Electrolyzers (PD156) Durab!e &
y Pl: S. Mukerjee economically-
affordable AEM

PGM-free OER &
HER Catalyst
Novel AEM and

Univ. Oregon lonomers
(PD1 87? Electrodes LANL Project
PI: S. Boettcher (PD158)
Precious Metal-free LTE Pl: H. Chung
of Dirty Water PGM-free OER
Perovskites

Catalyst
O Projects added FY’18

O Projects added FY’20

Across pH Ranges
ultiscale, Multi-Theory Modeling

ybrid Materials to Electrode
to Performance

® @

PEM: Understanding and AEM: Developing and
improving materials understanding materials

Discussed in PEC, P148A

Discussed here in LTE, P148C
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o Accomplishments and Progress:
E. Node Utilization for Project Support

K N R E L B Lawrence Livermore Sandia )
= National Laboratory National n:}l ‘

MATICNAL RENEWABLE EMERGY LABORATORY La huraturies BERKEL EY LAB

49 nodes requests

for LTE

@ Node Classification

27x Characterization

19 nodes used by 10x Computation
LTE projects 7x Material Synthesis
9x Process and
Manufacturing
Scale-Up
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c;i Collaboration and Coordination - Node Utilization
| FY’20 Projects |

LTE LANL | LANL
Lab | Node Super n“-m--

NREL Data Hub

Computational Materials J

LLNL Diagnostics and Optimization

LBNL DFT and Ab Initio Calculations v v

«
«

LBNL Multiscale Modeling v v v v
SNL LAMMPS

«

NREL Novel Membrane Fabrication v v v

«

Separators for Hydrogen
p yarog V4 V4 Vv

SNL .
Production

Multi-Comp. Ink Development,
NREL High-Throughput Fabrication, v vl v v Y
& Scaling

| Processing & Scale Up |

— | Computation |

| Material Synthesisl
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h’ Collaboration and Coordination - Node Utilization
| Fy’20 Prol|ects

Advanced Electron Microscopy

Catalyst Synthesis, Ex situ

NREL Characterization & Standardization

v Vv

lonomer Characterization and

-BNL Understanding

NREL In Situ Testing Capabilities

LS N L
DN
DN N
N
N
N
N
N

LBNL Understanding Inks & lonomer Disp.

N

SNL Near Ambient Pressure E-XPS

N

NREL Surface Analysis Cluster Tool v
LBNL Probing & Mitigating Corrosion v
LBNL PEC In Situ Testing using X-Rays v
LBNL Water Splitting Device Testing v

Fabrication & Characterization of
SRNL Electro-catalyst & Components for H2 v
Production

| Characterization .

HydroGEN: Advanced Water Splitting Materials




% Project Accomplishment
*‘ LTE Supernode




A Supernode — Accelerate Science
W through Collaboration

LTE Supernode Supernodes Objectives:

* Combine/integrate nodes to
demonstrate value when connected
(sum greater than combination of
individual parts)

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

* Increase collaboration across core
labs

* Provide core research for EMN labs,
beyond just project support

Savannah River
National Laboratory-

BERKELEY LAB

* Phase 1 measurable objective:
3 Nodes ) . .
Confirm that ex-situ characterization
approaches can be validated for
their applicability to device
performance and durability

HydroGEN: Advanced Water Splitting Materials 11
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Supernode Goals

-l.-'l o [EREWSE_E EHE"

Savannah River
National Laboratory-

iINREL €

S Le B0 ATGRY

Linking LTE/Hybrid Materials to Electrode Propertles to Performance

Goals: Create true understanding between ex-situ and in-situ performance.
Identify how material properties are linked to electrode properties
and how these are linked to electrolyzer performance.

Project Elements:

Electrocatalyst ex-situ
characterization (NREL)

Materials selection
PEM

AEM

Polymers and Membranes
(NREL)

Expertise:

lonomer thin films Modeling @
(LBNL) (LBNL)

Catalyst-lonomer-
solvent Interactions:

Ink properties
(NREL, LBNL)

Electrode Fabrication -
(NREL)

Catalyst-lonomer
Interactions: Electrode

Multiscale
Electrolysis
Model (LBNL)

properties
(NREL)

Devices

Electrochemical
Characterization
Catalyst

Ink Composition
Catalyst, lonomer
& Solvents

Materials:
Catalyst, lonomer
& Membranes

MEA Integration
Fabrication in
Parameter Space

Advanced
Characterization
Morphology,
Material Properties,

Jnterfaces

BT

Performance
Evaluation
In-Situ PEM, AEM

In situ Cell testing
(NREL, SRNL)

HydroGEN: Advanced Water Splitting Materials
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A Supernode Accomplishments:

S0 RDE/MEA Correlation

RDE Ex-Situ

1.65
16 |

or

= —0.02
—0.05

¢ 1.55 by

=2 —0.2

w 45 L 05
=

/ Iilll / HENafion mglr_l

0.01 0.1 1 10
im [A rnglr_'I

:*NREL®®
et | NN e B

* Correlation between RDE and MEA systems confirmed

e Same trend in RDE observed in MEA for effects of:

e Catalyst loading
* lonomer content
e Catalyst used

Savannah River - .
National Laboratory- r_‘\I i

BERKELEY LAE

S.M. Alia, G.C. Anderson, J. Electrochem. Soc., 2019, 166(4), F282-F294. DOI:10.1149/2.0731904jes
S. M. Alia, S. StarihaandR. L. Borup, J. Electrochem. Soc., 2019, 166(15), F1164. DOI: 10.1149/2.0231915jes

HydroGEN: Advanced Water Splitting Materials

MEA In-Situ
b) 1.65 —
/ ..,.f-" ;
16 | e
//./ ,"’ ‘;'/‘

156 | P A ~0.05 LIr
>, g ~02 lIr
T ¥ -0.27 lIr

| B ~0.3 Ilr
o =06 I:Ir

1.45 | ~0.8 IIr

rngNa'fil:mrnglr_1

1.4

0.01 0.1 1 10
i [Acm—?]
Ex-Situ In-Situ
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78 N

W

Supernode Accomplishments: Met Go/No Go Milestone by
Correlating Ex- with In-situ Performance(?-: NRE L @€ atory [0

BERKELEY LAE

MATI0 A L REREWAE_E EME™ Ty Le B0 AT Ry

- Oxides EYEA [v] AE [mv] |ERCE [V] AE [mV] |AE [%]
= MEA (1 A/mg) Alfa Aesar Ir0, 1.480 - 1.536 =
155 | DE ST B ) Umicore IrO/Tio,| 1511 305 1.561 254
TKK Iro, 1.446  -345| 1.502 -336
1.5 Furuya IrRuO, 1421 -596| 1477 -588
=1 45 l| II Alfa Aesar RuO, 1383 -974| 1.436 -99.5
w Johnson Matthey Ir 1.480 - 1.503 -
1.4 Umicore Ir 1.516 360/ 1.541 374
Premetek Ir 1479 11| 1502  -1.2
1.35 Il Premetek IrVu 1.471 91| 1493 -106
1.3
AAr02 Um TKKIrOx FulrRuCx  AA Rud2
"OWOZM tal LTE/Hybrid Supernode GNG: Demonstrate that the catalyst
16 elals performance (overpotential in the kinetic region) measured via
e {fg] mﬁfg) ex-situ RDE (at 0.1 A/mg) can be linked to in-situ MEA single
1.55 r ‘ cell performance (overpotential at 1 A/mg) within + 20% for 5
15 commercial catalysts. This success will demonstrate that ex-
. situ RDE characterization, which is simpler and quicker than
51.45 in-situ MEA testing, can be relevant and a good predictor of
4 catalyst performance in the device. As a result, the
' development of electrolysis material components can be
1.35 accelerated.
13 . .
Jnir Umr Prir Pririvu Ex-S'tu In-Sltu
S.M. Alia, M.-A. Ha, G.C. Anderson, C. Ngo, S. Pylypenko, R.E. Larsen, J. Electrochem. L\

Soc., 2019, 166(15), F1243-F1252. DOI:10.1149/2.0771915]es

HydroGEN: Advanced Water Splitting Materials
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A Supernode Accomplishments: Multiscale Modelmg
‘.ﬂ Agrees with Experimental Data n«NREL ﬁ,gg«;ﬂonngm;gfgtorr

BBBBBBBBBB

2.50 | | | o
* Kinetic results
— 2 25 - determined with ex-
=, situ RDE were used as
© 2.00 , -1  inputsinto cell model
E 175k : _| * Modeling results show
o : Model-0.2 mg/om? good agreement with
E 150 Model-0.4 ma/em2— experimental in-situ
[ | B o1mgom’ results
O 125 @ o2mgem® =] e Minimal loading effect
| | 04 mg/em? also reproduced by
1.00 1 ? 3 4 model

Current Density [A/cm?]

Ex-Situ Model In-Situ

|\
g g
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A Supernode Accomplishments: Doctor Blade and
D, Mayer Rod Comparisons ENR_E_I__,ﬁiﬁo"n":lhésﬁstorw

BERKELEY LAE

Voltage [V]

2.3 ————————————— 360
-—ai— Directly ultrasonic sprayed "
2.2 | —e— Ultrasonic sprayed and decal transferred ] 340 e Demonstrated a wide range of
2 1 | —*— Rod coated and decal transferred J1 320 loadi ibl . labl
| —v— Blade coated and decal transferred / oading possibie using scalable
2.0 300 coating methods
1.9 = 280« Decal transfer does not limit
1.8 " 260 é performance compared to directly
17} 0.3 mg,/cm? | 240 E sprayed electrodes
161 —s— Performance 1220 & . Doctor blade coated electrode
sl —=— HFR-free voltage |, . = performs better than rod coated
Y N S R HFR | 180 - Scalable coating methods
: | |
13 R P szzzzz3zas lonomer : Catalyst = 0.2 ] 160 (dOCtor blade) show comparable
Il St it bt Water : nPA=1:1 | performance to lab-scale
1.2 S S E— o1 1140 i i
0.0 0.5 1.0 1.5 2.0 2.5 3.0 coatings (ultrasonic spray)

Current Density [A cm™]

* lonomer : catalyst ratio from 0.1 to 0.3 did not
significantly impact performance for blade- or rod-

coated methods. Lab Scale Scalable

* Ink composition found to be less impactful at
higher loading. Thicker catalyst layers may mask
nonuniformities.

HydroGEN: Advanced Water Splitting Materials 16



A, Supernode Accomplishments: Hybrid Cycle
S Correlating Ex- & In-situ Testing |2 I NRE L& ormory S

BERKELEY LAE

MATI0 A L REREWAE_E EME™ Ty Le B0 AT Ry

Hybrid Cycle MEA testing RDE vs MEA testing
0.95 1 0.85
0 + RT-RDE 3.5M TKK
Anode Reaction 091 05 | # RT-RDE7MTKK
(slow Kinetics ) s 08 | RT-RDE 9M TKK
SO, +2H,0 - H,50,+2H" +2¢ 0.85 07 1 aRT-MEA
o~ <
B o susiszoec ==0.165 V vs.SHE | & 0 | 06 E Z
s | 05 C 8
L. | = - HyS55-2 05 2% 075
. Cathode Reaction ! 3 0751 04 2 8
(fast kinetics) S ] = I~ ]
1 2HY 526y > H,| | 07 1 0.3
: i ' 0.7 -
' E,, =~0 Vvs.SHE| | .
g ev g |8 & :,,,“,‘,:_; 065 | 0o g ® %o ol & ® o 0.2 7
0.1
06 b—RT=room temperature| , 0.65 ————— e
0 100 200 300 400 500 600 700 800 0.01 0.1 1 10
Current (mA cm2) Current (A mgp")

* Met Go/No Go milestone criteria of 50 % agreement between RDE and MEA testing
(indicated by shaded area)

* Good agreement between in-situ and ex-situ measurements at acid concentration of 7 M

* Performance sensitivity to coating method and catalyst ink formulation is similar to that
observed in fuel cells, but different from LTE

* Sensitivities differ between gas fed ] ]
and liquid fed systems Ex-Situ In-Situ

HydroGEN: Advanced Water Splitting Materials 17
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Supernode Accomplishments:
Thin Film Morphology: GISAXS

0.08

Thickness Swelling, i-.L.I’LU

il 2
0

Relative Humidity, RH [%4]

MATI0 A L REREWAE_E EME™ Ty Le B0 AT Ry

E:E N R E LSavannah River

National Laboratory- 2 _‘\I f1_

* Swelling behavior of 40 nm Nafion film on substrates studied
* Si(0,) = Ir(O,) [Bulk Oxide] > Ir(OH) [functionalized] = Ir [Metal]
* Metal oxide has lower swelling but comparable structure

* Functionalized OH lower swelling but no phase-separated structure
* Ir(O,) is most similar to Si, both structurally and hydration wise

Ir | 36 nm

0.06 1

0.04 ¢

0.02 |

| Lower Swelling

v

50

0.08 |
_ID
5
T 006}
(=]
=
% ;
5 0.04
m .
73] A
o -
3 002} "
£ o
rad
] ;
50

Relative Humidity, RH [%]
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Ir(OH)_| 45 nm

BERKELEY LAE

Ir(0,) | 45 nm Si(0,) | 41 nm
0.08} . . & 0.08 | ]
P Higher Swelling P o
i ; — i
9 006} ® T 06 M-
g = d
o o 7
& 004 #® | 5 o004 i
c 3 c m
% 0.02} . & 002} .
= . = '
I‘" -
0e%- : 0B - ~
0 50 100 0 50 100
Relative Humidity, RH [%] Relative Humidity, RH [%]
Material | | Transport
L N

N
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Project Accomplishment
Summary Slides




Example Project Accomplishment Slide

78 N
W @ Rensselier N@L® e LiNREL

,
LBboratiniBs  1mons. iekewss e eneior Leeaaaminy

Scalable Elastomeric Membranes for Alkaline Water Electrolysis

Project Preparing durable and economically-affordable alkaline hydroxide
- conducting SES materials and demonstrating the high performance
Goal: and durability in AEM-based water electrolysis

The project team developed polystyrene based alkaline polymers that approach
the 2020 target performance (2 A/cm? at 1.8 V) for AEM electrolyzer

2.4

PGM catalysts: AEM (RPI)
Anode: IrO, (4 mg,,o,/cm?) "‘
2.2 1 Cathode: PtRu/C (2 mg,,/cm?) /
V)
S, 2.0 1
) SES25-TMA-1.7
'?é) IEC = 1.7 meq. g “OH
- 1.8 A N— N—
o \ \
>
= | o
v 1.6 60 °C

y
4 ° 0aM NaOI—I (HFR = 0.065 Ohm cm?) lonomer (LANL) ele
' ®  Diwater (HFR = 0.18 Ohm cm?) s .

l o
1.2 T T T T T T T T OH
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 TMA-70,
IEC = 3.3 meq. g’

current density (A cm™)

HydroGEN: Advanced Water Splitting Materials Y Klm PD1 59
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&

PGM-free OER Catalysts for PEM Electrolyzer

NATIONAL LABORATORY  The St te Uni

— Sarlj =,
Argonne & | X3 Qorm:euros (BRI ( Siamrisomor () o TINREL

Project To develop platinum group metal-free (PGM-free) oxygen

Goal:

evolution reaction (OER) electro-catalysts as viable
replacement for Ir in proton exchange membrane water

electrolyzer (PEMWE)

2.00

An ANL PGM-free OER catalyst demonstrated an unprecedented current density
of 400 mA/cm? @ 1.8 V and stability over 10,000 voltage cycles in PEMWE.

1.90
1.80
1.70
1.60
1.50
1.40
1.30

PEMWE Cell Voltage (V)

——1st cycle
After——100th cycles
——500th cycle
——10000th cycle

Anode = ANL PGM-free @ 2 mg/cm?

High resolution electron microscopy shows ANL PGM-
free catalyst contains interconnected nanocrystallite
aggregates with morphology similar to its MOF precursor

1.20 Cathode = Pt/C, 0.5 mg/cm?
110 Membrane = N115, 5 cm? cell
' 60 °C, 10 psi DI
1.00
0.00 0.10 0.20 0.30

Cell Current Density (A/cm2)

0.40

HydroGEN: Advanced Water Splitting Materials
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Novel PGM-free Catalysts for Alkaline HER and OER

IVERSI Y or
ELAWARE

- Northeastern
@i University

Goal:

3 Operating temperature: 85 °C
1 3% K,CO; solution (OER); dry (HER)

%Ad\rent

Project Decrease the cost of hydrogen production via water
i electrolysis using high-performing PGM-free catalysts and a
novel, temperature-stable anion exchange membrane.

=

AEM electrolysis cell that achieved a potential of 1.78 V @ 1A/cm? with a net decay
rate of 1 mV/hr measured over 65 hours. The end of project goal is 1.72V @ 1 A/cm?.

BF2 Goal

//><

Potential (V)
=)

——— NiFe/Ni-Cup (BP1)
—— NiF&e/NICR (BP1)
—— NiFe/Nilo (BP2)
— NiFeCo/NiMo (BP2)
—— NiFeCa/NiMo (BP3)
- — IrOx/PL-C

- =
oL

-
E =%

i bv g o bov s bowal gy

BF3 Gc:al

G SR BN BUILELE BLELL BN B B
00 0.1

Current Density {Ncm )

T
02 03 04 05 06 07 DB 09

1.0

lllll

PAP-TP-MQN-10N

) 10N = % neutral N

3
<75 15
9 QO
_\_\—\_: PAP-TP-MQN-10N-XC

®| X =% cross-linked sites

Crosslinking membranes improves mechanical
stability with minimum loss of performance
10% Crosslinked: ASR @ 80 °C: 0.65 Q-cm?

IEC: 2.7 mequiv/g IEC loss after 1000hr in
Swelling @ 75°C: 12% 90°C KOH: ~8.13%

HydroGEN: Advanced Water Splitting Materials

S. Mukerjee, P156
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Performance and Durability Investigation of Thin, Low Crossover
Proton Exchange Membranes for Water Electrolyzers

N,
‘1' ¢ Chemours

Project Developing thin membranes with low ohmic loss on roll-to-roll
. equipment for PEMWE systems, leveraging fundamental
understanding of performance- and durability-enhancing
additives to maximize efficiency and minimize cost of H,.

Goal:

1<) 0 48

—ic  Maximum
—

o — Durability

—B8C

Radical Scavengers

oo

Roll to Roll Membrane Fabrication

,’Q g‘h _ = Optimized
- @% PEMWE @@

High selectivity State of the art PEMWE

membranes are thick (>125 um)
and unreinforced with no
stabilizing additives. This project
intends to improve on state of
the art by:

1. Engineering a thin, reinforced
membrane on roll to roll scale

Low Dissolution

Ca concantration (au.)
-
Ce mass density (mg/cm”)

Membrane

r— P—

| Gas Recombination
a Catalyst

==l 1| 4

Minimum | 275 2. Remediating gas crossover
Crossover 1 . . B
with recombination catalyst

High activity

in D_T in wol %

3. Preventing membrane

og degradation with immobile
: —‘-ll-—r—-—r—o—p-—o—?— 5
U cumeat dutlty I AHE radical scavengers

Low Mobility . o4

H

ql-—lyqdroGENz Adva'n_ced Water Splitting Materials A. Park. P186 2
. 3




High-Performance AEM LTE with Advanced Membranes, lonomers and PGM-Free Electrodes

| Georgialhstiiuie
\| effTechnologyy

W

South Carolina |} el * @Ak

EL CELL CATALYSTS

Goal:

Project To enhance and combine state-of-the-art alkaline polymer

) electrolyzer components into one optimized membrane
electrode assembly (MEA) system to achieve the DOE targets
for low temperature electrolysis (LTE)

40H >
0, + 2H,0 + 4e-

4H,0 + 4e >
2H, + 40H-

Non-platinum group metal catalysts are combined with state-of-the-art anion
conducting polymer membranes and ionomers to form high-performance MEAs

lonomer

PGM

_.—-NeecH

. NS oM —\__ |
l; ;l [ 1 [z ;l [
[ In 1 Im | lo | P

BaSrCuFeOx

Yearl 1 Down select

Unsupported,
trimetallic

Higher SA, doping
Year 2iDown select

Structured Supported

Year 3 Down select

HydroGEN: Advanced Water Splitting Materials

P. Kohl, PD185 24




N PGM-free OER Catalysts for Alkaline Water Electrolysis
h’ CWDER e NREL —

Laboratories 4...1 REMEWAE:_E EMETSY LeB0IATERY

Project Development of PGM-free Perovskite OER catalysts with

high performance and durability in the alkaline solution-free
Goal: pure water AEM water electrolyzer

The project team achieved significant progress since FY18. It improved

performance to 1.04 A/cm? at 1.8 V at 85°C and slowed degradation rates
to 0.2 mV/hr at 200 mA/cm? at 60°C.

48 mA/cm’(FY18 AMR) .
20} 291 . Ir0, at 100 mAjcnf
243 mAlem’ 1087 mAlem’ ' Ay
(FY19 AMR) (FY20 March)
18— e
— I — 20+t
= 2 FY20 March: LSC at 200 mA/cm?
o 16 F o
(@] [m)]
= © 18
2 14 2 FY19 AMR: L SC at 100 mAicm?
_ Pure water feed
16
12 L
Pure water feed at 60°C
‘1[] | | . ] . | ! | . 14 L 1 1 1 1 L 1
0 500 1000 1500 2000 0 20 40 60 80 100 120 140
Current density (mA cm™) Duration (h)

HydroGEN: Advanced Water Splitting Materials H C h u ng PD1 58 25
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Hydrogen From Membrane EIectron5|s of Dirty Water

Project Develop a technical understanding of performance

‘i

Goal: degradation of alkaline and bipolar membrane electrolyzers in
0a pure and dirty water and engineer impurity tolerant systems.

seawater/greywater & y . -
/3*' pure water electralysis with planor
current collector ¥ / EPM electrolyzer and new WD catalyst
steel with flow fields * a1 ' e
i — B weithioud
0] qesitdn E.. WD calalysi
2 MEA _ e
. gaskets Goae N0 S >
graphite W|th ﬂl::w fields = 4+
v current collector ' i
catalyst = 3
2 £ AEM
: 2t s
pure: E=g—
GDL +HER compressed H, 1
catalyst E

100 200 300 400 500 600 700 800

- current density (mA cm?)

HydroGEN: Advanced Water Splitting Materials S BoettCher P D 1 87 26
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High Efficiency PEM Water Electrolysis
1 UCIrving % OAK RIDGE iNREL

nele

National Laboratory NATIONAL FENEWABLE ENERGY Ao o
Goals: Develop ultra-efficient PEM Approach: Look at materials and
electrode per targets below manufacturing holistically to
optimize
Metric | State of the Art —_—
Membrane 175 microns 50 microns L o dong
thickness ’ ;
Operating 58°C 80-90°C
temperature
Cell 53 kWh/kg 43 kWh/kg
Efficiency
Accomplishments in Phase 2
Met voltage and durability targets with advanced catalyst Focus of Phase 2
and thin membrane
2 Continuous Operation at Elevated Temperature 1' Development Of hyd rogen Ccross-over
dC t Densit HI H
1.8 A/cm? I.SaR/crrlljzrren 3{138IAy/cm2 mltlgatlon Strategy
oS goocv 80°C | 2. Integrate catalysts and hydrogen
> e mitigation into integrated assembly
£ = -TE-06x + 1.7527 1
5 R e """”yy’";;'e il 3. Scale-up and conduct durability tests
S e in multi-cell stack
O . o
16 IrRuOx 4. Conduct final cost analysis
0 500 1000 1500
Accumulated Time, Hours

HydroGEN: Advanced Water Splitting Materials K Aye rs PD1 55 27
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g‘b Accomplishments and Progress — LTE Benchmarking

* Collaborated with HydroGEN Benchmarking Project
* Workshop participation
e Session chairing
* Progress on Protocols and Standard vocabulary &
definitions

* Interfacing HydroGEN & IEA Annex 30

Benchmarking activities
* Communicating RR phase Il progress
e Discussing common hardware platform

* Contributing to Meta Data development of
HydroGEN Data Center

HydroGEN: Advanced Water Splitting Materials 28



¢p Summary - HydroGEN LTE Projects

 HydroGEN LTE is actively supporting
* 8 FOA projects with 41 node call outs
* 2 Supernodes with 14 node call outs

* FOA Projects demonstrate improvements in
PEM & AEM technologies

e LTE Supernode interlinks Ex-Situ, In-Situ and
Modeling Results and supports upscaling

* Working closely with the project participants
and benchmarking activities to advance
knowledge and utilize capabilities

HydroGEN: Advanced Water Splitting Materials
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g‘;‘) Future Work

* Fully integrate recently started FOA awarded seedling
projects (~March/April 2020)

e Continue to enable and support research of the
funded FOA Projects through lab nodes and expertise

e Utilize and expand Supernodes to help accelerate LTE
research

 Work with the 2B team and LTE working group to
establish testing protocols and benchmarks

* Continue to utilize data hub for increased
communication, collaboration, generalized learnings,
and making digital data public

Any proposed future work is subject to change based on funding levels

HydroGEN: Advanced Water Splitting Materials 30
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} Overview - LTE Technology

Schematic PEM* Schematic AEM*
S

2H, 0, + 2H,0

0, + 4H* 2H, + 40H-

Anode ZE- Cathode

4H*

2H,0 40H- 2H,0

\ Acid / \ Alkaline /

Anode: 2H,0 => 0, + 2H*+2e-  Anode: 40H => O, + 2H,0 + 4e"
Cathode: 2H* + 2e"=>H, Cathode: 4H,0 + 4e" => 2H, + 40H"

* Niche Application « Low TRL Technology
Deployment - Research Stage
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A,
W

Impact

Overview - LTE Technology
Relevance /

/State-of-Art PEM

. 2V @ 2A/cm?

\ $3.7/kgH, productiony

~

« 2-3 mg/cm? PGM .
catalyst loading on
anode & cathode .

e 60k — 80k hours in
commercial units

* Niche applications .
— Life support
— Industrial H, .
— Power plants for .
cooling

HydroGEN: Advanced Water Splitting Materials

@ate-of-Art AEM

kavailable

~

2V @ 0.2A/cm? in H,0
Improved performance
in basic solution

2-3 mg/cm? PGM-free
catalyst loading on
anode & cathode

~2k hour at 27°C
demonstrated **

No commercial units

$/kg production not

*High volume projection of hydrogen production for electrolysis:
https://www.energy.gov/sites/prod/files/2017/10/f37 /fcto-progress-fact-sheet-august-2017.pdf
** K.Ayers, AMR Presen tation PD094, 06/2014
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Supernode Accomplishments:
ﬁ’ Electrode Fabrication Platforms

Ultrasonic Spray Doctor Blade/Mayer Rod Roll- to Roll

Used to demonstrate new Used to demonstrate new materials and Demonstrate scalability of
materials and for for fundamental studies. Prove out ink materials and MEA/cell
fundamental studies formulations or processes prior to R2R designs. Studies of process
variables

Conditions Conditions Conditions

e Dilute ink * Concentrated inks * Concentrated inks

e Sequential build up of e Single layer coating * Single layer coating

layers e Heated substrate * Room temperature

* Heated substrate e Vacuum substrate substrate

e Vacuum substrate e Batch Process * Convection drying

e Batch Process * Continuous Process
HydroGEN: Advanced Water Splitting Materials NREL 357
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Supernode Accomplishments:
Thin Film Morphology: GISAXS

2 . -
18 || g * Nafion morphology on Iridium substrates
714 —Iro,) — Overall phase-separated nanostructure
g'f — Broader peaks and weaker phase-separation on OH
E_ESE S ——— * 1Ir(O,) [Metal]: phase-separation (in-plane ordering)
8 e * Ir(OH) [functionalized]: no phase-separation (both directions)
e ) * Ir(O,) [Bulk Oxide]: phase-separation (thickness ordering)
rlgar B m’ wOH)_| Sat Irf0,) | Sat o1 | Sat
3 3 3 3
Ez“ Ezn EE-FEE
= = = =
Y 1 1 ul
0 o] L) 1 0
24 2 -1 0 1 2
p[nm 1 F,[nm 1 q,,[nm 1 q, [nm’"]
10° 10* 10% 10%
-—-- LDr ---- 1D | -—- - .Dn ---- 1D
{\ Sa!: | s:: | E.a: | s;?:
TN e ~+8al |T L e Bal | S . +8al |S f + Sal
3, weakphase |= % nophase |& +\, Strong =
= = L A e s . phase | lonomer Peak
= I\S""‘/‘r fion 377, T\ separation |7 10 .separation | I\ Phase-separation
FERT ol S . o 2 R 2 M
: h\ 2 ‘ g R
e ) 0%t 102 u*‘h"u- |
PhaFe-separation (<) ""1 | 1 DE‘Weak Phase-sep;%ﬂbh(.@)
1 2 3 1 2 3 1 2 3 1 2 3
a,.a, [hm’] a,.q, [m] a,.q, [hm’] a,.q, [hm’]
Material | | Structure /
L N _d
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