

HydroGEN: Solar Thermochemical Hydrogen (STCH) and STCH Supernode

A. McDaniel

Date: 5/20/2020

Venue: 2020 DOE Annual Merit Review

Project ID # p148D

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Advanced Water-Splitting Materials (AWSM) Relevance, Overall Objective, and Impact

AWSM Consortium 6 Core Labs:

<u>Accelerating R&D</u> of innovative materials critical to advanced water splitting technologies for clean, sustainable & low cost H₂ production, including:

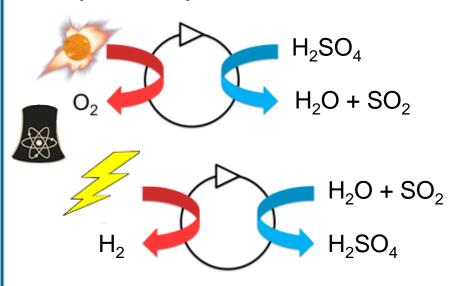
Overview – STCH and Hybrid STCH Technologies

Thermochemical Cycle

$$MO_x \rightarrow MO_{x-\delta} + \frac{\delta}{2}O_2$$

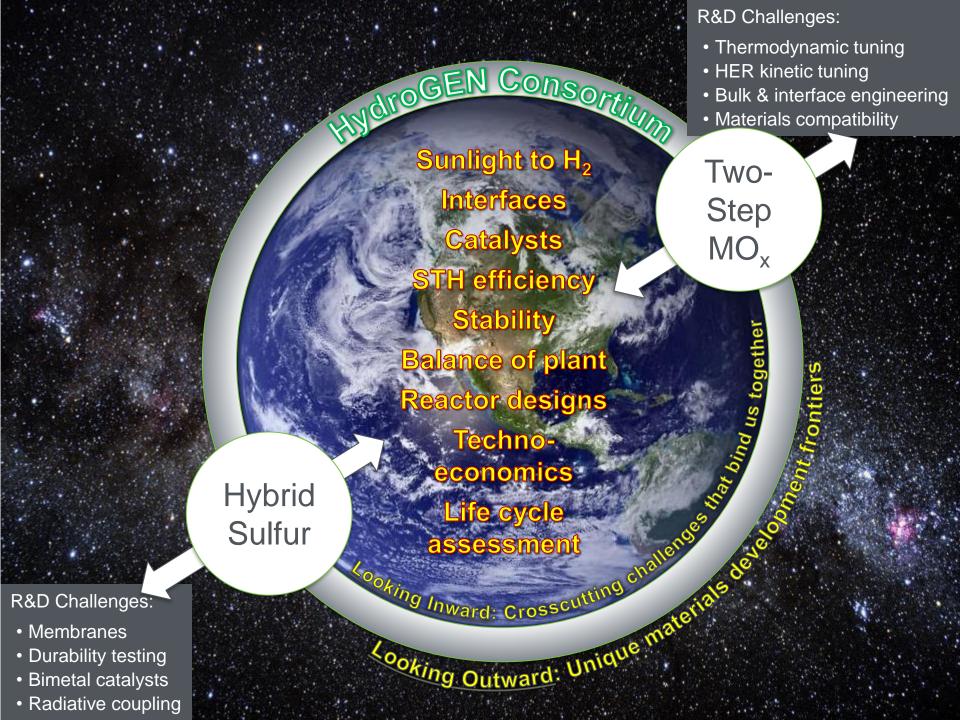
(1) Reduction

$$MO_{x-\delta} + \delta \cdot H_2O \rightarrow MO_x + \delta \cdot H_2$$


(2) Oxidation

$$\delta \cdot H_2 O \rightarrow \frac{\delta}{2} O_2 + \delta \cdot H_2$$

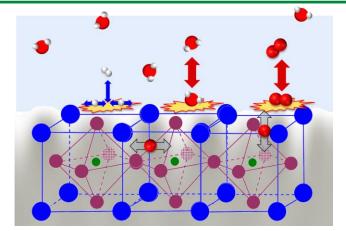
(3) Thermolysis


- Metal cation is redox active element in two-step cycle.
- R&D effort focused on MO_x materials discovery.

Hybrid Cycle

$$\begin{array}{c} \text{H}_2\text{SO}_4 \; \leftrightarrow \; \text{H}_2\text{O} + \text{SO}_2 + \frac{1}{2} \, \text{O}_2 \\ & \text{(thermochemical; 800-900 °C)} \\ \text{SO}_2 + 2 \, \text{H}_2\text{O} \; \rightarrow \; \text{H}_2\text{SO}_4 + \text{H}_2 \\ & \text{(electrochemical; 80-120 °C)} \\ \text{Net Reaction:} \quad \text{H}_2\text{O} \; \rightarrow \; \text{H}_2 + \frac{1}{2} \, \text{O}_2 \\ \end{array}$$

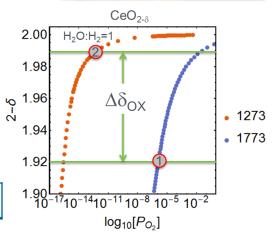
 Sulfur is redox active element in two-step cycle.



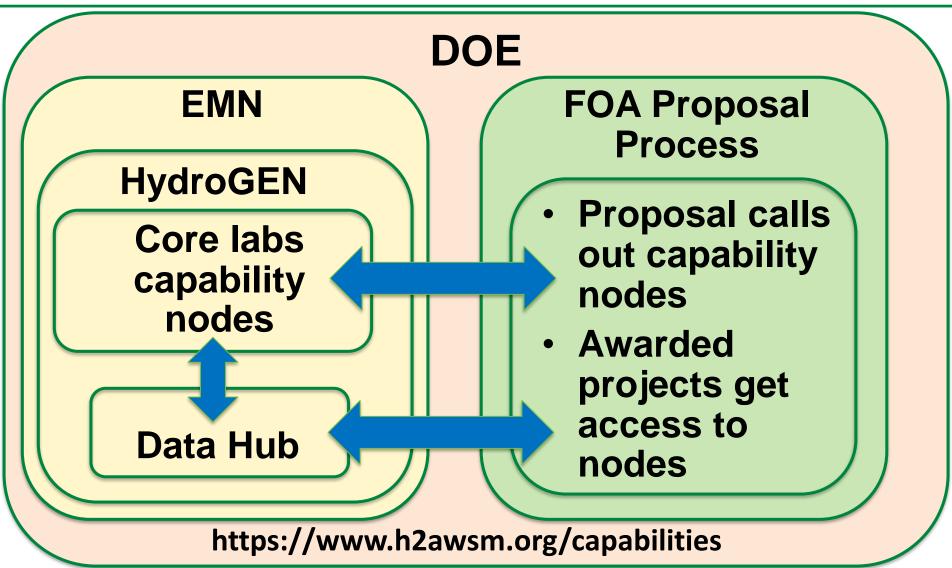
Principal Material Challenges for Non-Stoichiometric Oxides:

Reduction Temperature (T_R) & Solid State O-atom Activity ($\mu_{O,solid}$)

challenge: decrease T_R and increase $\Delta\delta_{OX}$


- Oxygen storage materials with a twist.
 - O-atom "harvested" from H₂O not Air
 - Bulk phenomena largely govern O-atom exchange with environment

- Material subject to extreme environments.
 - Redox cycling on the order of seconds
 - Large thermal stress per cycle
 - 800 °C< T <1450 °C; ΔT_{RATE} ~100 °C/sec
 - Large chemical stress per cycle
 - 10^{-14} atm< $p_{0.2}$ < 10^{-1} atm
- Water splitting at extremely low p_{02} .
 - Strongly reducing "oxidizing" atmosphere



Approach – HydroGEN EMN

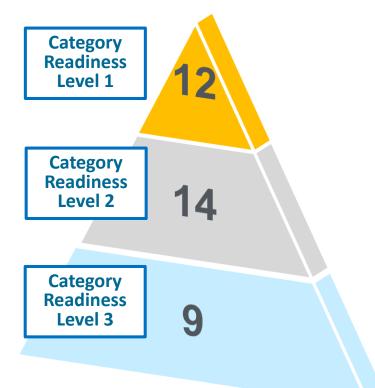
Approach – HydroGEN EMN

Barriers

- Cost
- Efficiency
- Durability

STCH Node Labs

Support through:



Personnel
Equipment
Expertise
Capability
Materials
Data

Collaboration: 35 STCH Nodes, 1 Supernode

Analysis: 2 Characterization: 6

Computation: 3 Synthesis: 1

Node is **fully developed** and has been used for AWSM research projects

Analysis: 3

Computation: 6

Node requires some development for AWSM

Characterization: 5

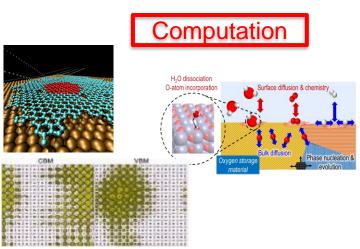
Synthesis: 2

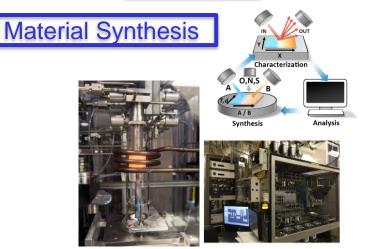
Analysis: 2 Characterization: 5

Computation: 4 Synthesis: 1

Node requires significant development for AWSM

- Nodes comprise equipment and expertise including uniqueness.
- Category refers to availability and readiness.
- Many nodes span classification areas.

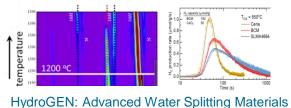

14 Nodes utilized by current STCH projects

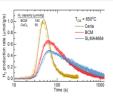


Collaboration: HydroGEN STCH Node Utilization

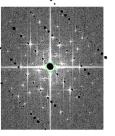
FY'20 Projects

Lab	Node	ASU	CSM	CUB	NWU	GWE	UF	UCSD	Super	NSF
LLNL	Mesoscale Modeling				√					
LLNL	Ab Initio Modeling								✓	
NREL	Defect Modeling		✓	✓			√	✓	✓	√
SNL	Uncertainty Quant.	√								
NREL	Defect Engineering	√			✓				✓	√
NREL	Thin Film Combinatorial		✓		✓					

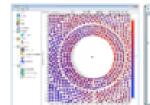


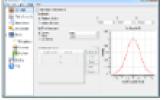

Collaboration: HydroGEN STCH Node Utilization

FY'20 Projects


	N. I	4011	0014	OUD	NDA/LI	OWE	=	шоор		NOF
Lab	Node	ASU	CSM	CUB	NWU	GWE	UF	UCSD	Super	NSF
INL	Catal. Harsh Environment					√				
SNL	HT-XRD & Therm. Analysis	√		√	√			√	√	
SNL	Adv. Electron Microscopy							✓	√	
SNL	Laser Heated SFR	✓	√	√			√		√	
SNL	AP-XPS						√			
NREL	Engineering BOP					✓				
NREL	TEA Hydrogen Production			√						
SRNL	AWSM Requirements Flow Sheet TEA					✓				

Characterization





Analysis

Project Accomplishment STCH Supernode

15 Team Members from 6 HydroGEN Nodes and 3 Labs

NREL:

- First Principles Materials Theory for Advanced Water Splitting Pathways. (S.Lany)
 - Role of charged defects in generating configurational entropy
 - Comp. screen material thermodynamics
- Controlled Materials Synthesis and Defect Engineering.
 (D.Ginley)
 - Controlled material defect engineering for DFT validation and descriptor testing
 - High resolution operando X-ray metrology at SLAC
- Additional personnel
 - Bob Bell, Anuj Goyal, Phil Parilla, Dan
 Plattenberger, Sarah Shulda, Nick Strange

LLNL:

- Ab Initio Modeling of Electrochemical Interfaces.
 (T.Ogitsu)
 - Large-scale ab initio simulations of material properties
- Additional personnel
 - Brandon Wood

SNL:

- High-Temperature X-Ray Diffraction (HT-XRD) and Complementary Thermal Analysis.
 - operando XRD, validate structure models
 - Thermal analysis, validate thermo models
- Virtually Accessible Laser Heated Stagnation Flow Reactor for Characterizing Redox Chemistry of Materials Under Extreme Conditions.

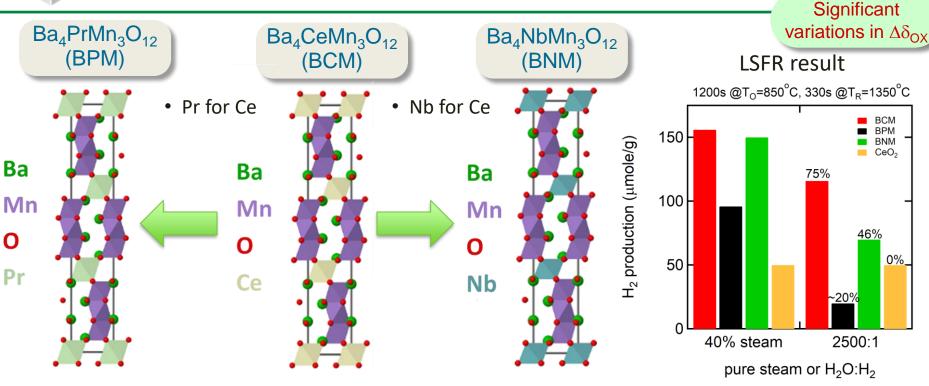
 (A.McDaniel)
 - Characterize and quantify redox performance
 - Assess material's efficacy for water splitting
- Advanced Electron Microscopy. (J.Sugar)
 - Characterize material morphology, composition, and structure with advanced electron microscopies and spectroscopies.
- Additional personnel
 - Andrea Ambrosini, James Park


Supernode Goal:

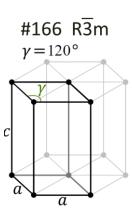
principal research outside scope of seedling projects

Atomistic Understanding of MnO₆ Arrangements that Influence WS Activity

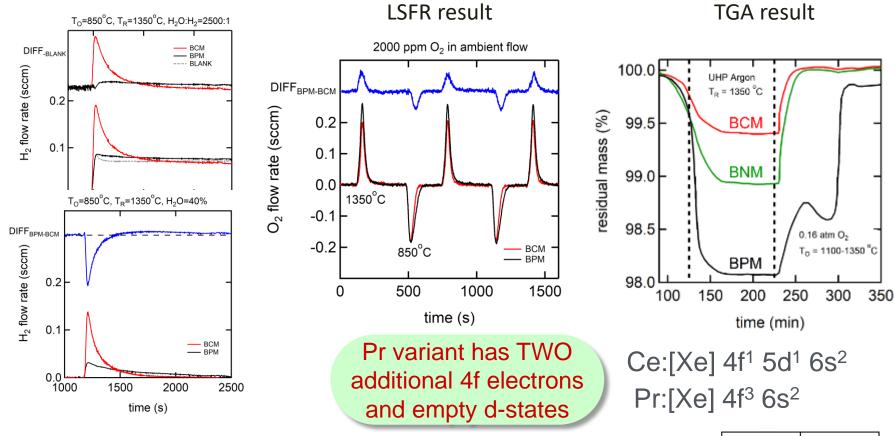
Important Interrelationships:


- electronics
- defects
- structure
- performance

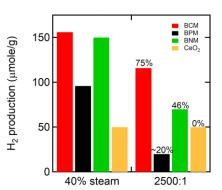
- Objectives.
 - Discover and synthesize model perovskite system
 - Develop and exercise multi-length-scale observation platforms and methods
 - Apply first principles theory to derive atomistic understanding of WS activity



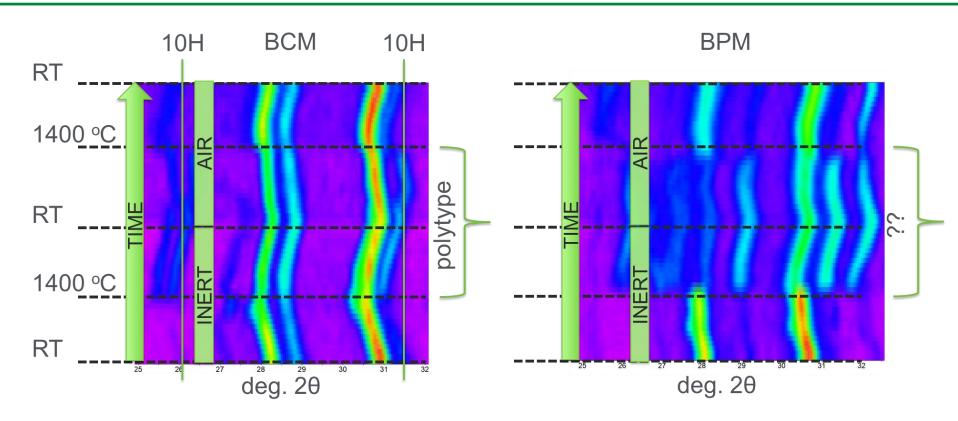
Accomplishment: Discovered Two New Water Splitting Compounds Structurally Identical Variants to BCM


- BXM (X = Ce, Pr, Mn) identical space group symmetry.
 - Perfectly ordered 12R-phase @ full stoichiometry
- Oxidation state $Pr^{+4} = Ce^{+4}$; $\Delta_{radii} \sim -2\%$; Mn^{+4} .
- Oxidation state Nb⁺⁵ \neq Ce⁺⁴; $\Delta_{\text{radii}} \sim$ -25%; Mn^{+3/+4}.

H₂ production exceeds CeO₂ cycled at T_R = 1350 °C

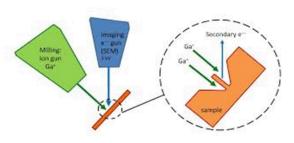


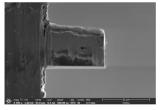
Accomplishment: TGA and LSFR Experiments Reveal Different Redox Behaviors within BXM Family



- O₂ redox capacity of BXM follows: BCM < BNM < BPM.
 - Consistent with flow reactor O₂ cycling data
- $\Delta \delta_{OX}$ for BPM < BCM in 40% H₂O and 2500:1 H₂O:H₂.
 - Identical crystallography, different electronic structure

Accomplishment: HT-XRD Experiments Reveal Different Redox Crystallography within BXM Family

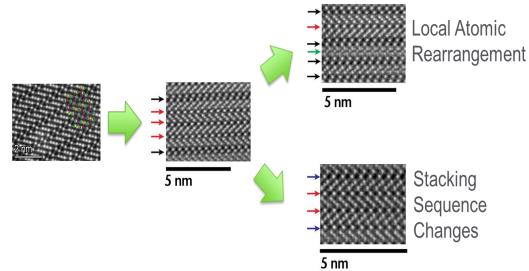

- 12R polytype transition in BCM is reversible and known.
- BPM clearly exhibits more complicated redox phase behavior.


unclear if non-stoichiometry or phase transition more important to WS

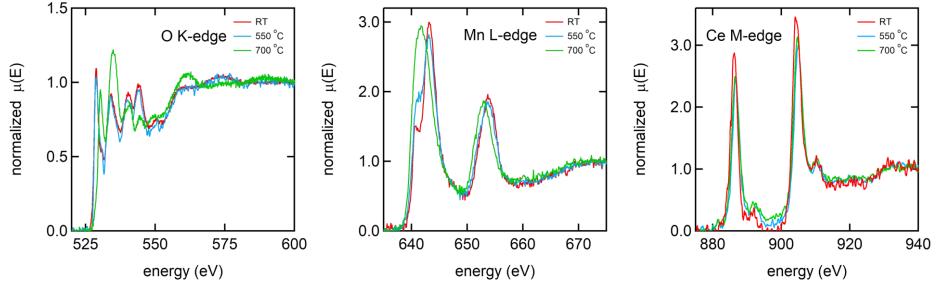


Accomplishment: Developed Experimental Method for In Situ Vacuum Reduction in HR/STEM

Precision FIB Cutout

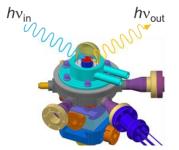


THERMAL REDUCTION

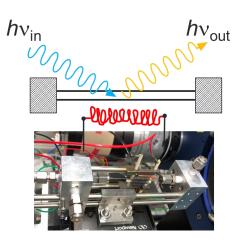

- FIB for precision prep of powders, pellets, and films.
 - Orient FIB cutout along low index crystal planes
- Heating rates >> 100 °C per second.
 - In situ thermal reduction

real space atomic-scale imaging may resolve mechanistic details of polymorph transformation

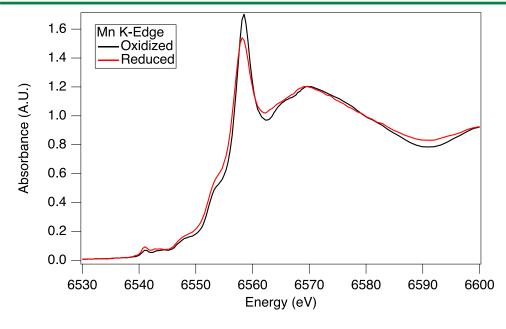
Accomplishment: Electron Energy Loss Spectroscopy (EELS) Measured In Situ During Vacuum Reduction

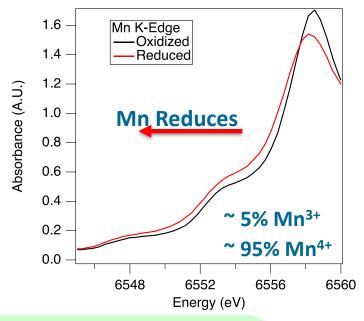

- EELS information equivalent to soft X-ray XAS.
- Clear and obvious changes to electronic structure local to MnO₆ manifold (coordination chemistry and oxidation state).
 - Features in O K-edge and Mn L-edge change shape and intensity
- Ce electronic states may not participate in reduction process (questions Seedling project's suppositions).

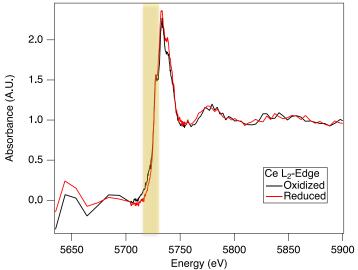

theory needed to resolve interrelationships between structure and performance


Accomplishment: Developed Operando Synchrotron X-Ray Scattering Techniques

- "Phoenix" high-temp operando flow cell.
 - Designed by SNL for use at SLAC
 - Accommodate powder and rigid forms
 - Flexible environmental controls (P, T, atm)
- In situ capillary cell.
 - Accommodate powder forms
 - Heating under limited control of ambient atm
 - High quality XRD for refinement of high temperature unit cell parameters
 - self-centering in situ XRD (no correction factors)
- Spinning capillary cell.
 - Accommodate powder forms
 - High-precision XRD for refinement of crystal parameters
 - Eliminate XAS self-absorption by diluting sample with diamond powder




synchrotron X-ray experiments compliment HR/STEM diffraction and EELS



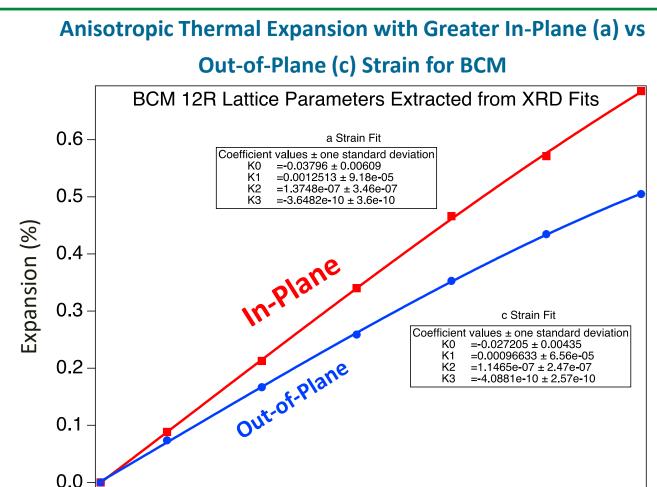
Accomplishment: Measured XAS on Lower Electronic Shells of Heavier Elements Inaccessible to EELS using Hard X-ray

In-operando hard-XAS identifies
Mn as the active redox element

build a more complete electronic structure picture with information from different edges:

- Mn K (XAS) and L (EELS)
- Ce L (XAS) and M (EELS)

HydroGEN: Advanced Water Splitting Materials



Accomplishment: Synchrotron XRD Identifies Anisotropic Thermal Expansion in BCM

100

200

- Anisotropic thermal expansion coefficients extracted from indexed diffraction peak shifts.
 - 35% difference in expansion coefficient by 600°C
- Anisotropic expansion modifies structure.
 - Cation-oxygen bonding angles change.
 - Electronic band structure is altered.

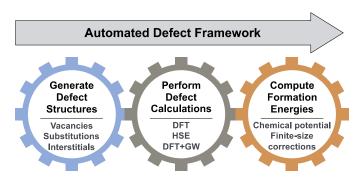
temperature dependent structure changes observable only via synchrotron XRD

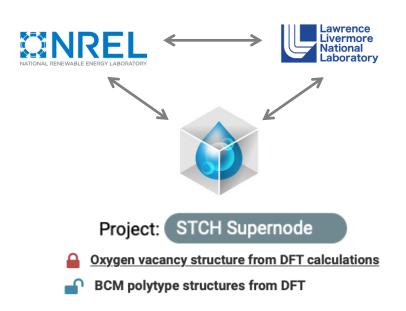
300

Temperature (°C)

400

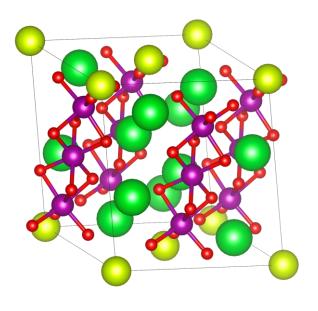
500

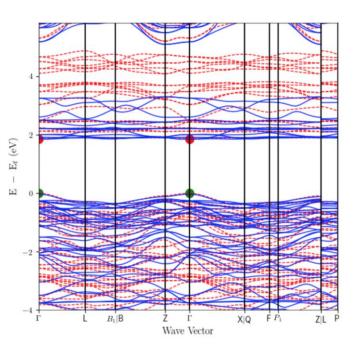

600


Accomplishment: Defect Modeling, XAS Analyses, Databases, Tools and Collaborative Efforts

- NRELMatDB: Database of computed materials properties
 - DFT relaxed structures
 - Thermochemical properties
 - GW electronic structure
- V. Stevanović et al, PRB 85 115104 (2012)
- S. Lany, J. Phys. Cond. Mater. 27, 283203 (2015)
- Collaborative efforts between NREL and LLNL
 - Defect modeling and analysis in BCM
 - Update Hydrogen Data Hub with defect structures and defect formation energies

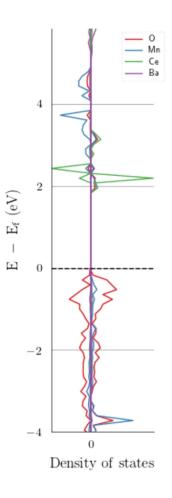
Tools: github.com/pylada/pylada-defects


A. Goyal, S. Lany et al. Comp. Mater. Sci. 130 (2017)



Accomplishment: Developing DFT Method for Analysis of EELS and XAS

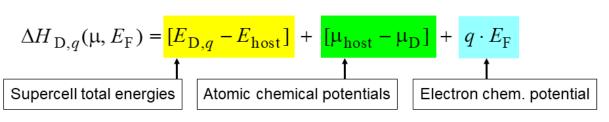
BCM/BPM/BNM:

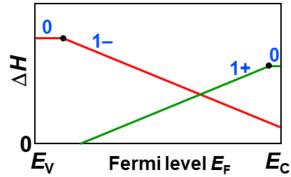


Band Structure

- Pre- & near-edge XAS probes PDOS.
- Mn₃O₁₂ trimers form triangular lattice in a-b plane.
 - Anti-ferromagnetic frustrated spin system $(\uparrow \downarrow \uparrow \uparrow \downarrow \downarrow)$
- Origin of AF: Mn-O hybridization (super exchange).

PDOS




sign indicates spin 1

Accomplishment: Applied First Principles Materials Theory to Defect Equilibria in BCM

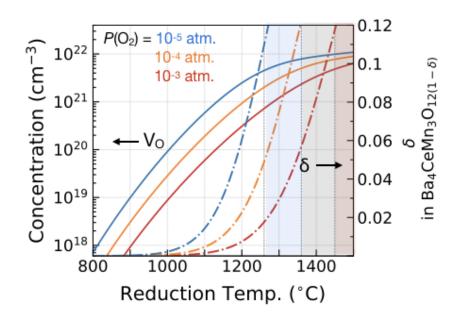
Defect equilibria from first principles

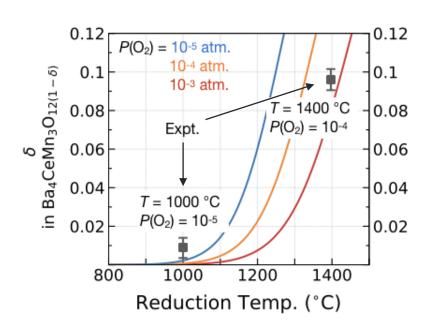
Defect formation energy	$\Delta H = \Delta H_{D,q}(\mu, E_F)$
Defect concentration	$c_{D} \approx N_{site} \!\! \times \! exp(\!-\! \Delta H \! / \! kT)$
Electron/hole density	$c_e = \iint_{FD} (E - E_F) g(E) dE$
Charge neutrality	$-c_e + c_h + \sum [q \cdot c(D^q)] = 0$
Self-consistent solution	$\begin{array}{cccc} \Delta H({\color{red} E_{\rm F}}) & \longrightarrow & c_{\rm D}(\Delta H) & \longrightarrow & {\color{red} E_{\rm F}} \\ & & & & & & & & & & & & & & & & & &$
pO_2 dependence of μ_O (ideal gas)	$\begin{split} \Delta \mu_{\mathrm{O}}(\textbf{\textit{T}}, P_{\mathrm{0}}) &= \frac{1}{2} \left[H_{\mathrm{0}} + \Delta H(\textbf{\textit{T}}) \right] - \frac{1}{2} \textbf{\textit{T}} \cdot \left[S_{\mathrm{0}} + \Delta S(\textbf{\textit{T}}) \right] \\ \Delta \mu_{\mathrm{O}}(\textbf{\textit{T}}, \textbf{\textit{P}}) &= \Delta \mu_{\mathrm{O}}(\textbf{\textit{T}}, \textbf{\textit{P}}_{\mathrm{0}}) + \frac{1}{2} k \operatorname{Tln}(\textbf{\textit{P}}/\textbf{\textit{P}}_{\mathrm{0}}) \end{split}$

$$\begin{split} \mathbf{M}_x\mathbf{O} &\to \mathbf{M}_x\mathbf{O}_{1-\delta} + \frac{\delta}{2}\cdot\mathbf{O}_2 \ \text{red} \\ \mathbf{M}_x\mathbf{O}_{1-\delta} + \delta\cdot\mathbf{H}_2\mathbf{O} &\to \mathbf{M}_x\mathbf{O} + \delta\cdot\mathbf{H}_2 \\ & \qquad \qquad \text{ox} \end{split}$$

$$H_2 + \frac{1}{2}O_2 \leftrightarrow H_2O$$

- Ideal gas chemical potential $\Delta\mu$ O_2 , H_2 , H_2O
- T-dependence of E_g , m_e^*
- Configurational entropy of defects, dopants, and pairs

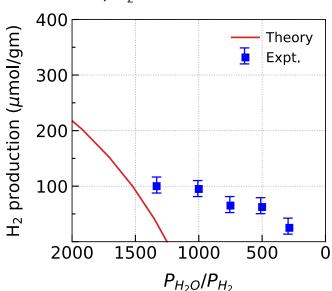

Accomplishment: Thermodynamic Modeling of BCM Reduction

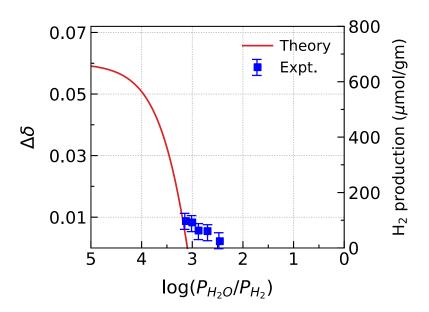

$$Ba_4CeMn_3O_{12} \longrightarrow Ba_4CeMn_3O_{12(1-\delta)} + 6\delta O_2$$

- Maximum T limited by decomposition into BaMnO₂ and BaCeO₃
- Reduction: $0.08 \le \delta \le 0.12$

theory agrees with experimental data within 0.1 eV in $\Delta\mu_{\rm O}$

experimental data courtesy: Eric Coker, Sandia




Accomplishment: Thermodynamic Modeling of BCM Oxidation

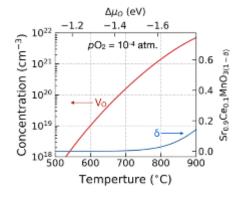
Ba₄CeMn₃O_{12(1-δ)} + 12
$$\Delta$$
δH₂O \longrightarrow Ba₄CeMn₃O_{12(1-δ+ Δ δ)} + 12 Δ δH₂
H₂ + 1/2O₂ \longleftrightarrow H₂O

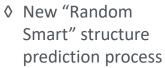
• Ideal gas: Higher $pH_2 \rightarrow lower pO_2 \rightarrow less$ oxidation $\rightarrow lower \Delta\delta$ Experimental data: D. R. Barcellos, R. O'Hayre et al, EES 11 3256 (2018)

$$\delta = 0.06$$

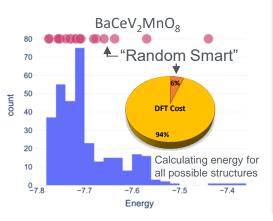
 $T_{ox} = 850$ ° C
 $pH_2O = 1$ atm

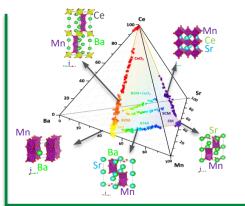
Project Accomplishment Summary Slides

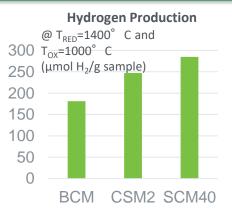

Successful High-Throughput Approach


PD165 Accomplishment

Accelerated Discovery of Solar Thermochemical Hydrogen Production Materials via High-Throughput Computational and Experimental Methods

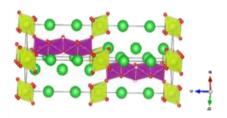

Ryan O'Hayre and Michael Sanders, Colorado School of Mines

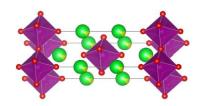

- ♦ Translating DFT defect calculations into predictions of Reduction vs Temp
- ♦ Validating against actual exp. data for known compositions



- Uses unsupervised ML algorithm
- ♦ Significant speedup
 - ~16X for a complex quinary oxide composition

♦ Exploring structure changes between BaMnO₃, SrMnO₃, and CeO₂ additions


♦ Steady increases in hydrogen yield from BCM (BaCe_{0.25}Mn_{0.75}O₃) & CSM2 (Ce_{0.2}Sr_{1.8}MnO₄) to $SCM40 (Sr_0 Ce_0 MnO_3)$


Successfully integrating high-throughput computation and experiment to discover, down-select, screen, and validate new STCH-active oxides

Accelerated Discovery of Solar Thermochemical Hydrogen Production Materials via High-Throughput Computational and Experimental Methods PI: Ryan O'Hayre and Michael Sanders, Colorado School of Mines

Abstract: We have developed two novel perovskite-related manganates containing cerium, one with Ce on the B-site, BCM (BaCe_{0.25}Mn_{0.75}O₃), and the other on the A-site, CSMx (Ce_xSr_{2-x}MnO₄). Both have improved H_2 production when compared to ceria. BCM is the first perovskite to show significant water-splitting under simulated high steam utilizations.

Goals & Approach:

- □ Demonstrate significant progress towards relevant 2020 targets.
- \square Reduce sufficiently at < 1400° C.
- \Box Oxidize under <10:1 H₂O:H₂ ratio.
- □ First study to incorporate watersplitting results under simulated high steam utilization conditions.

Significance of Result:

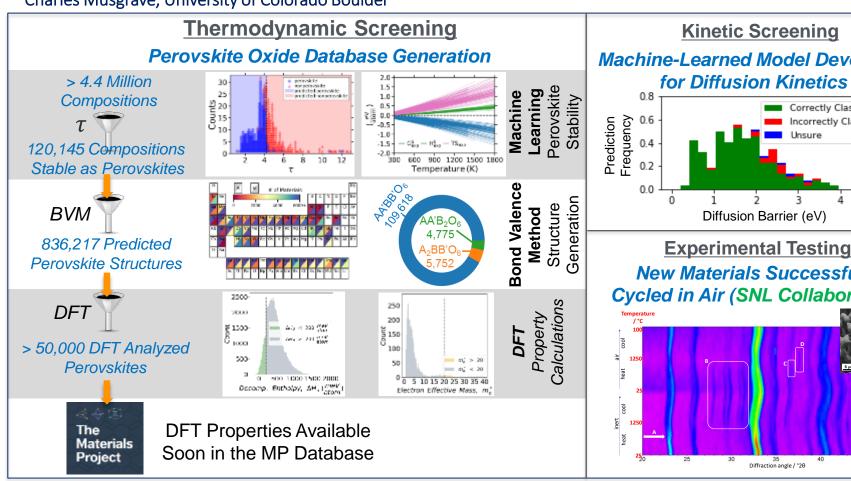
- □ Validates DFT predictive power in STCH material development.
- Narrows the target window for oxygen vacancy formation energy.
- □ Increased H₂ yield under both low and high steam utilization regimes.

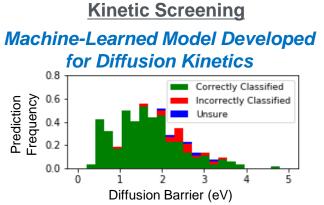
Keywords: Perovskite, STCH, DFT

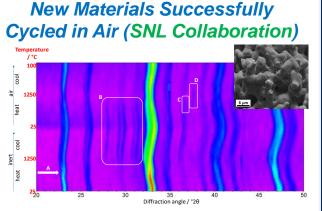
Publications: Imp. Fact

- R. Barcellos, D., et al., BaCe_{0.25}Mn_{0.75}O_{3-δ}—a promising perovskite-type oxide for solar thermochemical hydrogen production. Energy & Environmental Science, 2018. 11(11): p. 3256-3265.DOI: 10.1039/C8EE01989D
- Barcellos, D.R., et al., Phase Identification of the Layered Perovskite Ce_xSr_{2-x}MnO₄ and Application for Solar Thermochemical Water Splitting. Inorganic Chemistry, 2019. 58(12): p. 7705-7714. DOI: 10.1021/acs.inorgchem.8b03487

33

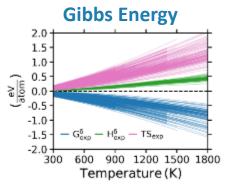

Progress Measure Screening Perovskite Oxides for STCH

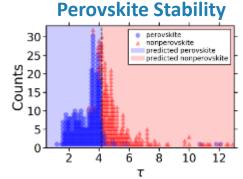

PROJECT ID: P166


Accomplishment

Computationally Accelerated Discovery and Experimental Demonstration of High-Performance Materials for Advanced Solar Thermochemical Hydrogen Production

Charles Musgrave, University of Colorado Boulder


Utilizing ab-initio calculations with machine learned models and experiments to screen thermodynamic and kinetics of > 830,000 structures



Computationally Accelerated Discovery and Experimental Demonstration of High-Performance Materials for Advanced Solar Thermochemical Hydrogen Production PI: Charles Musgrave, University of Colorado Boulder

Machine-learned Models of Materials Stability for Rapid STCH Screening

Abstract: Here, we used the SISSO approach to identify a simple and accurate descriptor to predict the Gibbs energy for stoichiometric inorganic compounds with $^{\sim}50$ meV/atom resolution for 300 K < T < 1800 K. We also developed an accurate and physically interpretable machine-learned tolerance factor, τ , that correctly identifies 92% of compounds as perovskite or not.

Goals & Approach:

- □ Project goal is to utilize machine learned models, *ab-initio* calculations and experiments to develop new STCH materials
- Determining the stability of compounds, particularly under relevant reaction conditions, has been a long-standing challenge in the discovery of new materials
- Utilizing the SISSO machine learning approach enables the rapid screening of stability of relevant compounds (perovskites) at high temperatures

Significance of Result:

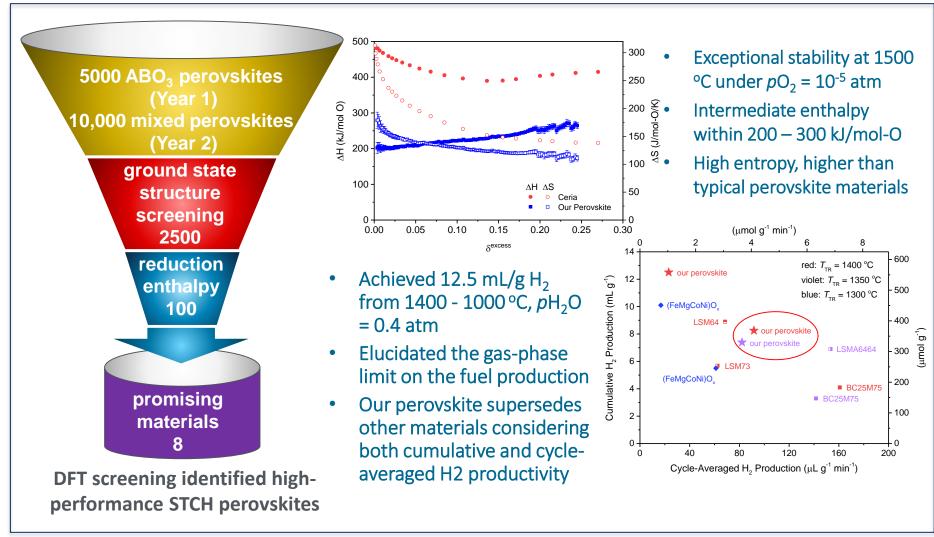
- \Box τ reduces the number of required DFT calculations for perovskites by > 40 x
- □ Gibbs energy model depends only on composition and 0 K structure, enabling rapid screening of material stability at STCH conditions

Keywords: machine-learning, SISSO, stability, STCH, oxidation kinetics, O vacancy diffusion

Publications:

Imp. Fact

1.	C. Bartel et al. (DOI: 10.1038/s41467-018-06682-4)	11.9
2.	C. Bartel et al. (DOI: 10.1126/sciadv.aav0693)	12.8
3.	R. Trottier et al. (DOI: 10.1021/acsami.0c02819)	8.5

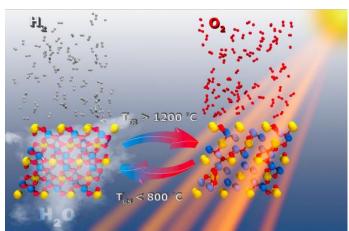

Progress | Computational/Experimental Strategy | Leads to Improved STCH Compound

PROJECT ID:

PD167

Accomplishment

Transformative Materials for High-Efficiency Thermochemical Production of Solar Fuels Chris Wolverton and Sossina Haile, Northwestern University



Transformative Materials for High-Efficiency Thermochemical Production of Solar Fuels

PI: Chris Wolverton and Sossina Haile, Northwestern University

CeTi₂O₆ - A Promising Oxide for Solar Thermochemical Hydrogen Production

Abstract: A large entropy of reduction is crucial in achieving high-efficiency solar thermochemical Hydrogen (STCH). We perform a systematic screening to search for Ce⁴⁺-based oxides which possess large onsite electronic entropy associating with Ce⁴⁺ reduction. We find CeTi₂O₆ with the brannerite structure is the most promising candidate for STCH since it processes a smaller reduction enthalpy than ceria yet large enough to split water and a large entropy of reduction.

□ An efficient DFT search strategy developed for new STCH materials with high entropy of reduction and moderate enthalpy of reduction. Search for high-entropy Ce⁴⁺ compounds combined with DFT calculation of enthalpy of reduction.

Significance of Result:

- □ CeTi₂O₆ has a comparable reduction of entropy with CeO₂ but small reduction enthalpy than CeO₂.
- □ A new route of designing STCH materials
- □ This material may help to reach the DOE goal of hydrogen production

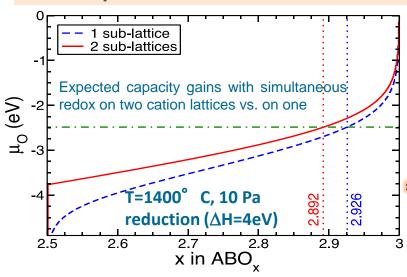
Keywords: STCH, oxides, on-site electron entropy

Publications:

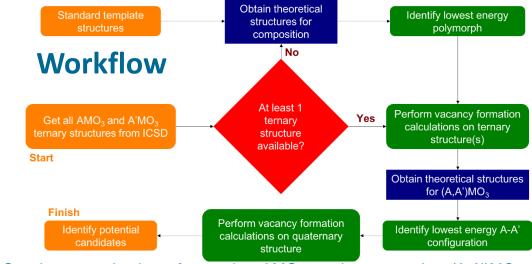
Imp. Fact

S. S. Naghavi et al., ACS Appl. Mater. Interfaces (under review. 2020)

Progress | Identifying optimal candidates via efficient theoretical Measure | screening of (A,A')MO₃ perovskites (M = 3d metal)

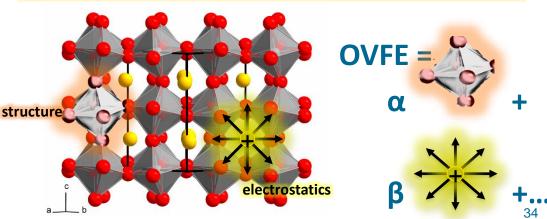

PROJECT ID: PD168

Accomplishment


Mixed Ionic Electronic Conducting Quaternary Perovskites: Materials by Design for STCH H₂ PI: Ellen B. Stechel, Arizona State University; Co-PI: Emily A. Carter, Princeton University

Developed a theoretical workflow that systematically calculates the oxygen vacancy formation energy in ternary and quaternary perovskites, which enabled the successfully identification of candidate(s) with simultaneous cation redox in our target window for reduction enthalpy.

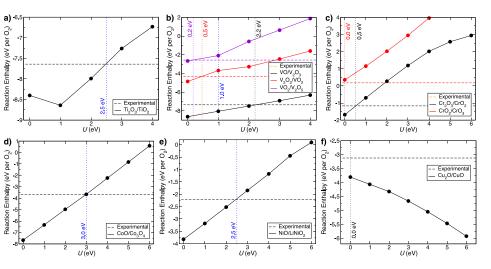
On-going collaboration with NREL colleagues for synthesis and validation, followed by validation of the predicted thermodynamics at Sandia.



HydroGEN: Advanced Water Splitting Materials

Consistent evaluation of ternaries AMO₃, and quaternaries (A,A')MO₃ perovskites to identify optimal oxygen vacancy formation energy

Materials design principles from Machine Learning (ML)



Mixed Ionic Electronic Conducting Quaternary Perovskites: Materials by Design for STCH H₂

<u>PI: Ellen B. Stechel</u>, Arizona State University; <u>Co-PI: Emily A. Carter</u>, Princeton University

Abstract: Evaluating optimal U corrections for 3d transition metal oxide systems, specifically Ti, V, Cr, Co, Ni, and Cu, within the strongly constrained and appropriately normed (SCAN)+U exchange-correlation (XC) framework. The optimal U values were calculated based on experimental oxidation enthalpies.

Goals & Approach:

- Develop a theoretical framework to screen for novel solar thermochemical water splitting candidates
- □ Constructing a theoretical SCAN+*U* framework provides a better fundamental underpinning for materials screening

Significance of Result:

- □ We found that the SCAN+U framework provides a better description of the thermodynamic, structural, electronic, and magnetic properties of several transition metal oxide systems
- □ SCAN+U framework developed here will be useful in materials screening for several applications
- □ This work is a critical component that helps us to evaluate candidate metal oxide perovskites, including A-A'-M-O (M = 3d metal) systems for thermochemical water splitting

Keywords: DFT, SCAN, SCAN+U, property prediction

Publications:

O.Y. Long, G.S. Gautam, and E.A. Carter, Phys. Rev. Mater. in press, 2020 (DOI: N/A: Journal link:

https://journals.aps.org/prmaterials/accepted/6a078Z45A1a1cb04708d634 115850ae25654f991b)

Engagement with 2B Team and Data Hub

- Collaboration with 2B Team Benchmarking Project.
 - 2B working groups and annual meeting
 - Node feedback on questionnaire & draft test framework
 - Defining: baseline materials sets, testing protocols
- STCH data metadata definitions in development.
- Large number of STCH datasets uploaded to hub.
 - Designing custom APIs to facilitate error-free, auto-uploading

Summary

- HydroGEN supports 7 STCH FOA projects with 14 nodes.
- Developing and validating tools for accelerated materials discovery are major seedling project themes.
 - Computational material science proving effective
- Working closely with the project participants to advance knowledge and utilize capabilities and the data hub.
- Applying atomistic theory and advanced experimentation in STCH Supernode to understand behavior of Mn-O based water splitting materials.
 - Discovered 2 new water splitting compounds (BPM, BNM) structurally identical to BCM
 - Experiments reveal different redox behaviors within BXM family
 - Hot stage TEM/EELS reveal electronic structure changes in BCM under reduction
 - Operando synchrotron X-ray scattering shows structural changes in BCM under reduction
 - Developing DFT methods to model core-hole spectroscopies
 - Applied first principles materials theory to model defect equilibria in BCM

Future Work

- Leverage HydroGEN Nodes at the labs to enable successful budget periods 1 (new), 2 (continuing), and 3 (continuing) seedling R&D activities.
- Integrated research conducted within STCH Supernode.
 - Further investigate stoichiometric and defect structures in BXM
 - Derive atomistic insights into water splitting performance, structure, and charge compensation mechanisms in BXM induced by redox chemistry
- Work with the 2B team and STCH working group to further establish testing protocols and benchmarks.
- Utilize data hub for increased communication, collaboration, generalized learnings, and making digital data public.

Acknowledgements

Authors

Anthony McDaniel Huyen Dinh

STCH Project Leads

Claudio Corgnale Jian Luo Charles Musgrave Ryan O'Hayre Jonathan Scheffe Ellen Stechel Chris Wolverton

Node Pls

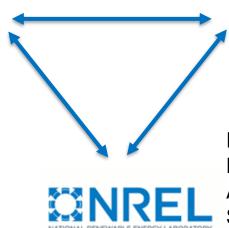
Eric Coker
Bert Debusschere
Farid El Gabaly
David Ginley
Daniel Ginosar
Max Gorensek
Tae Wook Heo
Stephan Lany
Zhiwen Ma
Anthony McDaniel
Josh Sugar
Andriy Zakutayev

Research Teams

Engineering consultant in Aiken County,

South Carolina

Acknowledgements



STCH Supernode Team

Andrea Ambrosini Eric Coker Anthony McDaniel James Park Josh Sugar Josh Whaley

Tadashi Ogitsu Brandon Wood

Robert Bell
David Ginley
Anuj Goyal
Stephan Lany
Philip Parilla
Dan Plattenberger
Sarah Shulda
Nick Strange

