

Novel Chalcopyrites for Advanced Photoelectrochemical Water-Splitting

Nicolas Gaillard University of Hawaii

P162

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Project Overview

Novel Chalcopyrites for Advanced Photoelectrochemical Water-Splitting

- Lead PI: Nicolas Gaillard (University of Hawaii)

- Co-Pls: Clemens Heske (UNLV) Thomas Jaramillo (Stanford)

Project Vision

We accelerate the development of new PEC water splitting materials through integrated theory, synthesis and advanced characterization.

Project Impact

We develop innovative techniques to fabricate chalcopyrite-based water splitting devices that can meet DOE's cost target of \$2/kg H₂.

Award #	EE0008085
Start/End Date	10/01/2017 - 09/30/2020
Year 1 Funding* Year 2 Funding*	\$280,172 \$430,570

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE)

Approach – Technical background

The promise of chalcopyrite-based PEC systems

1. Chalcopyrites can generate high photocurrent density

2. Low-cost processes available

Chalcopyrite PV module cost: \$100/m²

3. Demonstrated water splitting with co-planar devices

4. Chalcopyrites are bandgap (E_G) tunable

Chalcopyrites compatible with tandem architecture

Take home message: chalcopyrites are excellent candidates for PEC water splitting. Novel wide bandgap (E_q) absorbers with improved optoelectronic properties needed for high efficiency <u>tandem cells</u>.

Project motivation

- UH/UNLV/Stanford/NREL/LLNL funded by EERE (2014) to identify promising chalcopyrites for water splitting H₂ production.
- New absorbers, interfaces and surface protection schemes were evaluated.
- Key barriers identified with these systems will be addressed in this new project.

Key Impact

Metric	State of the Art	Proposed	
STH Efficiency	4%	>10%	
Durability	350 hrs	>1,000 hrs	

Technical barriers addressed in this project

- Synthesis and Manufacturing barrier (AJ): wide bandgap chalcopyrites are difficult to make with vacuum-based processes.
- 2 Materials Efficiency barrier (AE): chalcopyrites interface energetics are not ideal for PEC water splitting.
- 3 Integrated device configuration barrier (AG): there is no known method to make efficient chalcopyrite-based tandems.
- Materials Durability barrier (AF): coating ultra-thin protective layers on 'rough' polycrystalline chalcopyrites is challenging.

Approach – Partnerships / Scope

Task 1 - Modeling and Synthesis of Chalcopyrite Photocathodes

To address **Synthesis and Manufacturing (AJ)** and **Materials Efficiency (AE)** barriers, we model and develop new alloying and doping techniques to improve chalcopyrites efficiency.

Task 2 - Interfaces Engineering for Enhanced Efficiency and Durability

To address **Materials Efficiency (AE)** and **Materials Durability (AF) barriers**, we develop new interfaces to tune chalcopyrite "energetics" and improve their stabilities during PEC water splitting.

Task 3 - Hybrid Photoelectrode Device Integration

To address **Integrated device configuration barrier (AG)**, we develop a unique "transfer" method to create semi-monolithic chalcopyrite-based tandem devices.

Take home message: our program is developing materials, methods and models addressing all fundamentals of photoelectrochemistry to accelerate the development of water splitting materials.

Integrated Theory, Analysis, Synthesis and Testing

Approach – Innovation highlight #1

1) Novel chalcopyrites alloying using printing techniques

Synthesis and Manufacturing barrier (AJ): our models revealed that low photovoltage in CuInGaS₂ originates from Ga_{Cu} defects. Alternative Ga-free wide bandgap Cu(In,**AI**)Se₂, Cu(In,**B**)Se₂ identified by theory. However, these materials are too challenging to make by co-evaporation.

Proposed innovation: replace evaporation with "printing" technique to synthesize Cu(In,Al,B)Se₂ using molecular inks containing all necessary constituents (e.g. CuCl, InCl₂, AlCl₃/BCl₃).

3.0

2.0

Energy (eV) 0

0.0

-1.0

0 2+ Ga_{cu}

CuGaS,

0 Ga_{ci}

CuGaSe,

 \rightarrow **Proof of concept:** solution processed Cu₂ZnSnSe₄ solar cells (funding agency: ONR)

\rightarrow This approach lowers material cost and provides a viable path to meet DOE's target of \$60/m².

Approach – Innovation highlight #2

2) Innovative tandem device integration schemes

Integrated Device Configurations barrier (AG): materials compatibility (e.g. temperature) is the biggest challenge in multi-junction device integration. With current chalcopyrite PV technology, it is impossible to fabricate high efficiency monolithic multi-junction devices by directly depositing a wide-bandgap photocathode onto a narrow bandgap PV driver.

Proposed innovation: exfoliation of finished PEC cells and bonding onto fully processed PV drivers to create a semi-monolithic tandem device.

 \rightarrow **Proof of concept:** 1 μ m thick CIGS layer successfully "peeled" from substrate using polymer

→ Enable integration of chalcopyrites into low-cost tandem water splitting devices

Relevance & Impact – Leveraging EMN capability nodes

- **Computational Materials Diagnostics and Optimization (T. Ogitsu).**
- Role: modeling of materials optoelectronic properties (Eg vs composition, defects chemistry...etc). \rightarrow
- Benefit to this program: defines synthesis conditions and thermodynamic stability of novel chalcopyrites. \rightarrow
- Broader impact for HydroGEN: LLNL models can be used to predict bulk/interfaces of future materials for PEC water \rightarrow splitting and other H₂ production pathways.
- I-III-VI Compound Semiconductors for Water-Splitting (K. Zhu) ►
- Role: synthesis of high-purity PEC and PV chalcopyrite materials (CuGa₃Se₅ and CuInGaSe₂). \rightarrow
- **Benefit to this program:** "reference" vacuum-based chalcopyrites to evaluate new strategies (Na doping). \rightarrow
- Broader impact for HydroGEN: materials developed could be used for other H₂ production pathways (i.e. \rightarrow PV/electrolysis).
- High-Throughput Thin Film Combinatorial Capabilities (A. Zakutayev) Þ
- **Role:** screening of n-type buffer materials (e.g. graded MgZnO: $40 \neq$ compositions on 1 CIGS sample). \rightarrow
- Benefit to this program: accelerates material discovery for improved interface energetics (buried junction). \rightarrow
- \rightarrow Broader impact for HydroGEN: comprehensive library of optical, electronic and microstructural properties of new multi-compound materials made available to the scientific community via the HydroGEN Datahub.
- **Corrosion Analysis of Materials (T. Deutsch)** ►
- Role: supports development of surface passivation against photo-corrosion. \rightarrow
- Benefit to this program: provide access to unique instrumentation (e.g. ICPMS). \rightarrow
- Broader impact for HydroGEN: assessment of durability test protocols (e.g. fixed current vs. fixed potential). \rightarrow
- Photophysical Characterization of PEC Materials and Assemblies (J. Cooper) ►
- Role: supports development of novel wide-bandgap absorbers. \rightarrow
- **Benefit to this program:** provide new insights into charge carrier dynamics at Solid/Solid and Solid/Liquid interfaces. \rightarrow
- Broader impact for HydroGEN: identify corrosion mechanisms and potential pitfalls of protection strategies. \rightarrow

HydroGEN: Advanced Water Splitting Materials

10

Accomplishments – Milestones and Go/No-Go criteria for budget period 2

→ Milestones and Go/NoGo decision points met or on track for Y2

Task #	Subtask Title Milestone ID Descriptio		Description	Anticipated Quarter	Status
2.1	Interface: energetics	Milestone #1	Determine the factors contributing to increased open circuit voltage of at least 900 mV with a MgZnO:Ga-coated and surface-treated wide bandgap chalcopyrite absorbers under simulated AM1.5G illumination, with a stretch goal of demonstrating over 200 mV improvement over the baseline by the end of year 2.	Q1	100%
2.2	Synthesis of chalcopyrite	Synthesis of chalcopyriteMilestone #2A printed polycrystalline Cu(In,Al,B)Se2 thin film material losing less that 50% of photocurrent and photovoltage after exfoliation/transfer.		Q2	100%
2.2	Interface: durability	Milestone #3	Retain 90% of metal content in a thin, transparent protective coating over the course of 100 hrs of electrocatalytic HER testing at -10 mA/cm^2.	Q3	90%
2.2	Interface: durability	Go/No-Go #1/2	Using a chalcopyrite photocathode, sustain hydrogen production (initially exceeding -8 mA/cm^2) at 90% of initial photocurrent density for 200 hours.	Q4	100%
3.2	HPE integration	Go/No-Go #2/2	Create a semi-monolithic tandem device exhibiting a Voc that is at least 50% of the sum of the Voc's of the individual tandems.	Q4	100%

Accomplishments – Task 1: Modeling and Synthesis of Chalcopyrite Photocathodes

barrier (AJ)

Material

1.1) Theoretical modeling (LLNL theory node)

This year's focus: understanding influence of impurities on absorbers optical absorption losses

Higher O and C incorporation predicted in certain Cu-rich growth conditions

Illumination and interfacial band bending can influence the favorable defect populations

Charge density isosurface associated with localize state of Oi acceptors

Broader impact to community: modeling provides critical information on absorbers thermodynamic stability, defect chemistry and helps identify promising new material candidates.

HydroGEN: Advanced Water Splitting Materials

HydroGEN: Advanced Water Splitting Materials

Accomplishments – Task 1: Modeling and Synthesis of Chalcopyrite Photocathodes

1.2) Chalcopyrites "printing" using molecular inks

a. Narrow bandgap CuInSe₂ (AMR 2019)

*Highly crystalline printed CulnSe*₂ *absorber*

b. Wide bandgap CuInAlSe₂

Modeling of CIASe Eg vs. [AI] (LLNL)

Quantum efficiency >90% demonstrated

PCE>12% with CuInAlSe₂ ([AI]=10%)

PCE>10% validated on PV cells by NREL

Material

barrier (AJ)

Challenge: Increasing [AI] beyond 30% leads to segregation (formation of AI_2O_3)

SEM top view / EDX map of CulnAlSe₂

Accomplishments – Task 1: Modeling and Material Synthesis of Chalcopyrite Photocathodes barrier (AJ)

1.2) Effect of synthesis and coating environments: air and glovebox (GB)

X-ray Photoelectron Spectroscopy (XPS) @ UNLV

X-ray Emission Spectroscopy (XES) @ ALS

Fit analysis of glove-box (GB) $Culn(S,Se)_2$ sample using ln_2S_3 , Cu_2S , and $CulnS_2$ (CIS) references: provides insights into the chemical impact of deposition and processing steps

Local chemical environment of S at/near the surface
As-deposited samples show a variety of local chemical bonding environments
Increase in S-O bonds in absorber synthesized and spin-coated in air

Accomplishments – Task 2: Interfaces for Enhanced Efficiency & Durability

Efficiency barrier (AE)

2.1) Surface treatment of CuGa₃Se₅ photocathodes (NREL CIGSe node)

a. Surface passivation with Na, Cd or Si (AMR 2019)

Surface treatments tested so far:

- NaF: 30 nm (evaporated)
- Si: 6 nm (evaporated)
- Cd2+: partial electrolyte (PE) treatment

→ Significant improvements in photoconversion (Na, Cd) and/or charge separation (Na, Si) achieved via surface treatment.

b. Surface passivation with Zn

- In situ Zn + Se co-evaporation at the end of CuGa₃Se₅ co-evaporation
- Zn surface treatment increases solar cell efficiency from 3.0 to 3.8%
- Improvements possibly due to surface passivation
 - CuGa₃Se₅/CdS lattice mismatch is 5.3%
 - CuGa₃Se₅/ZnSe lattice mismatch is 2.7%
- PEC photocathode performance degraded in H₂SO₄ electrolyte. Future tests to include higher pH.

Accomplishments – Task 2: Interfaces for Enhanced Efficiency & Durability

2.2) Combinatorial development of tunable "buffers" (NREL Combi./CIGSe Nodes)

Factors contributing to increased V_{OC} up to 925 mV with MZO and surface-treated CuGa₃Se₅ absorbers:

- □ Cd²⁺ partial electrolyte treatment
 - removes surface O and Na
 - Ion exchange of Cu and Ga with Cd; possibly create compensating defect(s)
 - Change of absorber surface conductivity type to either intrinsic or n-type ('p-i-n' junction)

□ Improved CB alignment with higher bandgap Mg_xZn_{1-x}O

Energy band positions for $CuGa_3Se_5$ absorber with different surface treatments, in comparison with the CBM position in $Mg_xZn_{1-x}O$.

(based on XPS, Kelvin probe, hall effect and UV-Vis spectroscopy data, all measured at NREL)

Efficiency

barrier (AE)

for Enhanced Efficiency & Durability 2.3) Protection against photo-corrosion (Stanford-NREL CIGSe Node)

Accomplishments – Task 2: Interfaces

Sample preparation

- CuGa₃Se₅ thin film co-evaporated on Mo at NREL,
- CuGa₃Se₅ sample coated at Stanford with 3.3 nm WO₃ (sputtered) coating and 1 nm Pt (e-beam evaporated) catalyst

Durability

barrier (AF)

→ Generate > 90% of initial photocurrent density for more than 270 h of continuous testing

Accomplishments – Task 3: Hybrid Photoelectrode Device Integration

barrier (AG)

Device

3.1) Transparent conductive (TC) binder for semi-monolithic tandem (UH)

Transparent conductive flexible composites (TCFC) to "glue" top cells onto fully integrated bottom cells

Concept image of UH's TCFC comprising conductive spheres protruding out of a polymeric film

Image of UH's free-standing TCFC

Optical cross-sectional view of TCFC

Resistance as low as 0.2 ohm.cm²

Optical transparence as high as 90%

HydroGEN: Advanced Water Splitting Materials

Accomplishments – Task 3: Hybrid Photoelectrode Device Integration

barrier (AG)

Device

3.2) Semi-monolithic tandem integration (UH-NREL CIGSe Node)

 \rightarrow Approach: semi-monolithic devices were created by exfoliating and bonding wide bandgap (1.7 eV) CuGaSe₂ solar cells onto narrow bandgap (1.1 eV) silicon devices using HNEI's transparent conductive flexible composites (TCFC).

4. TCO deposition

TCO layer improves lateral charge collection

5. Final bonding onto Si bottom cell with TCFC

Our concept of semi-monolithic tandem could be extended to combine chalcopyrites with other "incompatible" low-temp. PV classes (a-Si, organic absorbers, Perovskites...etc.)

Accomplishments – Task 3: Hybrid Photoelectrode Device Integration

Device barrier (AG)

3.2) Semi-monolithic tandem integration (UH-NREL CIGSe Node)

\rightarrow Validation using NREL's 1.6 eV CuGaSe₂ device and Si solar cells.

Test setup (inverted config.)

Device	Voc (mV)
CGSe reference cell	660
Si reference cell	580
Semi-monolithic tandem	1,035

 $\frac{V_{\text{oc-tandem}}}{V_{\text{oc-Si}} + V_{\text{vo-CGSe}}} = \frac{1,035}{660 + 580} = 83\% \text{SGNG#2} (50\%)$

→ Semi-monolithic concept successfully demonstrated.

→ Future work to include integration of chalcopyrites with wider bandgaps (1.8-2.0 eV).

Collaboration – Interactions with EMN project node experts to date

→ Active interactions between academic teams and EMN nodes with regular communication regarding samples exchange and collected data.

Task #	Academia-Nodes Interactions	Specific activity	Goal	Impact to Project	Barrier
1	UH - LLNL theory Node	Data exchange (XRD spectra, optical data, low temperature conductivity measurements).	Model the effect of [O] and [C] impurities on OVCs optical transmission.	This work provides guidance for novel chalcopyrite candidates selection.	AE
1	UH - NREL I-III-VI Node	Sample exchange (CuInAlSe ₂ solid state devices).	Measure photo- conversion properties of printed CuInAlSe ₂	Validates the printing method to be used to create quaternary chalcopyrites.	AE, AJ
1	UH - NREL Corrosion Node	Sample exchange (1.8eV GalnP ₂ preference photodiode).	Calibrate UH solar simulator for wide E _G chalcopyrite PEC testing	In line with benchmarking efforts, this ensure proper characterization of the proposed chalcopyrite systems.	AE
2	Stanford - NREL I-III-VI Node	Sample exchange (CuGa ₃ Se ₅).	Test WO ₃ ALD nano- coating for protection against photocorrosion.	Extend chalcopyrite photocathodes durability beyond 500 hrs (Y2 GNG #2/2).	AF
2	UH - LBNL Photophys. Node	Sample exchange (Cu-poor CulnGaS ₂).	Characterize electrical defects with photoluminescence	Identify chemical/structural defects responsible for the low photovoltage measured in some chalcopyrites.	AF
2	NREL I-III-VI Node - NREL Combinatorial Node	Sample exchange (CuGa ₃ Se ₅).	Deposition of composition graded MgZnO buffer (optimization)	Increase the photovoltage produced by chalcopyrite photocathodes (700 to 925 mV as of March 2019).	AE

HydroGEN: Advanced Water Splitting Materials

Collaboration – Collaboration with crosscutting '2b' benchmarking team

- N. Gaillard, C. Heske, T. Jaramillo, T. Ogitsu and T. Deutsch have been participating in the development of PEC standards since 2008.
- Inputs for the next round of methods and protocols shared with PEC "2b benchmarking" team through the provided questionnaires.
- Participation to HydroGEN AWSM Benchmarking Meeting (organized in conjunction to ECS conference), Seattle, May 13th, 2018.
- Participation to "Advanced Water Splitting Technology Pathways Benchmarking & Protocols Workshop" held in Phoenix on October 24th & 25th 2018.
- Participation to "2nd Annual Advanced Water Splitting Technology Pathways: Benchmarking & Protocols Workshop" held in Scottsdale on October 28th & 31st 2019.

REVIEW

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

☑ Springer

Task 1 - Modeling and Synthesis of Chalcopyrite Photocathodes

Sub-task 1.1 – defect passivation: with help from Theory Node (LLNL) and Photophysical Node (LBNL), further elucidate the impact of [Cu] on wide bandgap chalcopyrite sub- E_G transmission properties (e.g. Cu-rich CuGaSe₂ vs. Cu-poor CuGa₃Se₅).

Sub-task 1.2 – printed chalcopyrites: understand and solve AI segregation in Cu(In,AI)Se₂ to improve optoelectronic characteristics.

 \rightarrow IMPACT: produce materials compatible with 20% STH efficiency or higher.

Task 2 - Interfaces Engineering for Enhanced Efficiency and Durability

Sub-task 2.1 – interface energetics: combine new surface treatments with MgZnO to create top cells with V_{oc} >1V. Sub-task 2.2 – interface durability: further improve the deposition of WO₃ protective layers and finalize milestone #3.

 \rightarrow IMPACT: establish a path for un-assisted and durable PEC water splitting.

Task 3 - Hybrid Photoelectrode Device Integration

Sub-task 3.1 – conductive polymers: further develop the concept of conductive binder and test alternative media. Sub-task 3.2 – semi-monolithic HPE device: pair wide bandgap chalcopyrite photocathodes with other PV drivers aiming for total photovoltage >1.6V.

 \rightarrow IMPACT: create the first efficient chalcopyrite-based tandem device.

Y3 Milestones and project deliverable table

	Milestone Summary Table-Y3						
Recipient Name: University of Hawaii / Hawaii Natural Energy Institute							
Project Title: Novel Chalcopyrites for Advanced Photoelectrochemical Water-Splitting							
Task #	Task or Subtask	Milestone Type	Milestone Number*	Milestone Description (Go/No-Go Decision Criteria)	Milestone Verification Process (What, How, Who, Where)	Anticipated Date	Anticipated Quarter
1.2	Synthesis of chalcopyrite	Milestone	1.2-3	A printed single-phase polycrystalline $Cu(In,AI,B)(S,Se)_2$ thin film material showing photovoltage greater than 700 mV.	Voc will be recorded at NREL via J-V analysis and reported in quarterly report	30	Q10
2.1	Interface: energetics	Milestone	2.1-3	Demonstrate an open circuit voltage greater than 1,000 mV on at least 10 MgZnO:Ga-coated wide bandgap chalcopyrite absorbers integrated on a Mo substrate under simulated AM1.5 G illumination.	Voc will be recorded at NREL via J-V analysis and reported in quarterly report	33	Q11
2.2	Interface: durability	Milestone	2.2-4	Retain 90% of metal content in a thin, transparent protective coating over the course of 300 hrs of electrocatalytic HER testing at -10 mA/cm^2.	To be measured at Stanford via chronoamperometry	36	Q12
3	HPE integration	Project deliverable		A standalone semi-monolithic chalcopyrite-based device capable of producing renewable hydrogen with an STH efficiency of at least 5%, with a stretch goal of 10%.	To be measured at HNEI or NREL via current-voltage analysis	39	Q13

Project Summary

<u>High-level project goal</u>: Strengthen **theory, synthesis and advanced characterization "feedback loop"** to accelerate development of chalcopyrites for efficient PEC H₂ production.

Technical objectives:

- To address Synthesis and Manufacturing (AJ) and Materials
 Efficiency (AE) barriers, we model and develop new alloying and doping techniques to enhance chalcopyrites efficiency.
- To address Materials Efficiency (AE) and Materials Durability (AF) barriers, we develop new interfaces to improve chalcopyrites surface energetics and chemical stability during PEC operation.
- To address Integrated device configuration (AG) barrier, we develop a unique method with "transferable" PEC films to create semi-monolithic chalcopyrite-based tandems.

<u>Benefits for HydroGEN and scientific community</u>: our models can be used to predict the properties of future materials (optical absorption, thermodynamic stability, defect chemistry) and interfaces (band-edges offsets).

Transferable PEC thin films

