

Extremely Durable Concrete using Methane Decarbonization Nanofiber Coproducts with Hydrogen

PI: Alan W. Weimer

Gage Sowell, Kent Warren, Boning Wang, Linfei Li, Mija Hubler

University of Colorado at Boulder

Andrew Broerman, Forge Nano

Colin Lobo, NRMCA

05/29/2020

Project ID# P183

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview: Year 1 of 3-Year Project

Timeline

Project Start Date: 5/1/2020¹ Project End Date: 5/1/2023 % Complete: 5%

Technical Barriers Addressed

S. High-temperature robust materialsW. Materials and catalysts developmentX. Chemical reactor development andcapital costs

Budget

Total project funding: \$1,000,000 Sub-contract: \$125,000 Total recipient cost share: \$250,000 Total funds received to date: \$306,731

Collaborators

<u>ForgeNano</u>, Thornton, CO

Reactor/process design and technoeconomic analysis

National Ready Mix Concrete Association

(NRMCA), Alexandria, VA

Concrete materials, mix design, and consulting

Project Objective: Develop a scalable low-cost CVD process to produce carbon nanofiber (CNFs) and H_2 from CH_4 using a sacrificial ALD catalyst deposited on a fumed silica substrate. A minimum 10% Investors Rate of Return (IRR) for a process selling CNFs at an acceptable identified cost while selling H_2 for < \$2/kg.

Technical Barrier	Objective	Progress this reporting period
(S) High-temperature robust materials and (W) Materials and catalysts development	Demonstrate co-production of H_2 (vol % H_2 /vol % CH_4 > 0.2) and CNFs (L/D > 10; > 5 wt% Carbon) on sacrificial ALD catalyst	 Reactor design complete Process flow diagram complete
(X) Chemical reactor development and capital costs	Develop preliminary process simulation and TEA to estimate CNFs selling price for a 10% IRR while selling H ₂ at \$2/kg	 Preliminary TEA in progress

- Use single-atom (adatom) transition metal catalysts on a fumed silica support to grow CNFs
- Catalyst will be produced using particle atomic layer deposition (ALD) in a fluidized bed reactor
- Catalyst will **not** be separated from CNFs (sacrificial)
- CNF product will be used as a crack-bridging additive in Portland cement

Catalyst Metal	Catalyst Support	ALD Chemistry
Iron	Fumed silica	Ferrocene/H ₂
Nickel	Fumed silica	Nickelocene/H ₂
Cobalt	Fumed silica	Cobaltocene/H ₂

Approach: Particle ALD/CVD Catalysis System

Step 1: One ALD cycle onto fumed silica particles

Step 2: CNF growth and hydrogen coproduction from methane gas

Approach: Task 3, Technoeconomic analysis

Approach: Milestone Summary

G

19 Q1 💦 FY19 Q2

FY19 Q3

Go/No-Go FY19 FY20 Q1

🔰 FY20 Q2 💫 FY20 Q3

Q4 Go/No-Go <u>FY20</u>

- Go/No-Go FY19
- CNFs produced with L/D > 10, $CH_4:H_2$ (vol%/vol%) = 0.2, and carbon wt% > 5
 - H_2 impurity identification and consultation with H_2 pumping experts

FY19 Q4

- CNFs produced with L/D > 10, 50% CH_4 conversion, and carbon wt% > 25
- TEA analysis to determine selling price of CNF to achieve $2/kg H_2$ target
- Maximum crack sizes ≤100 μm under drying conditions at 28 days, increased tensile ductility, 25% lower chloride permeability, no change in set time

Category	Key Milestones	Go/No-Go FY19 Progress	Go/No-Go FY20 Progress
Particle ALD/CVD catalysis system	 ✓ Reactor design and PFD □ Reactor start-up and initial testing □ CNF growth on metal ALD catalyst 	 25% accomplished Reactor and PFD design complete Build will be completed in Q2 CNF growth demonstrated in Q4 	 Process optimization will occur after initial CNF growth demonstration
Cement mix design	 ✓ 1st stage mix design □ 2nd stage mix design □ Optimal CNF characteristics identified 	• N/A	 CNF product from experiments will be incorporated into cement mix designs
Technoeconomic analysis	 Process PFD Aspen Plus simulation Preliminary TEA 	 Consultation carried out with H₂ pumping experts to determine the ultimate purity anticipated for the product H2 	 Experimental results will inform TEA developed in FY19 Q4

Accomplishments and Progress: Reactor design

- Ceramic alumina reactor tube
- Reaction and carrier (N₂) gases delivered through metal tube
- Nitrogen delivered through bottom as fluidizing gas
- Compression fittings kept outside hot zone

Accomplishments and Progress: Filter and bottom inset from reactor design

Bottom assembly inset

Accomplishments and Progress: Process flow diagram

- All-in-one system capable of operating under vacuum and atmospheric pressure
- Lines heated by PID controlled heat tape
- Mass flow controllers interface with LabVIEW
- Nitrogen delivered as carrier and fluidizing gas

Cement mix design using commercial CNFs

1. Preliminary concrete mix design (Based on research papers and commercial mix designs)

Cement (kg/m^3)	Fly Ash (kg/m^3)		Coarse aggregate (kg/m^3)	Fine aggregate (kg/m^3)	Water (kg/m^3)		Superplasticizer
320	80	44.5	1040	700	171	0.35	yes

2. Three-point-bending tests on concrete samples embedded with carbon nano-fibers)

Proposed Future Work

Milestones: remainder of FY19¹

Task 1: Particle ALD catalysis system

- •Reactor will be heated to max operating temperature of 900°C
- Minimum fluidization velocity of fumed silica up to 900°C will be determined
- •CNFs will be grown on ALD catalyst. Carbon content will be at least 5 wt% of the total mass of CNF + catalyst + substrate while producing H2 having a volume ratio to CH4 of at least vol %H2/vol % CH4 = 0.2

Fask 2: Cement mix design using commercial CNFs

- Optimal CNF characteristics will be identified based on chloride permeability and set time. CNF containing samples will show: (1) chloride permeability 25% lower when compared to standard acceleratedset high-strength cement obtained from cement manufacturers; and (2) no change in set time
- •CNF containing samples will show: (1) maximum crack sizes ≤100 µm under drying conditions at 28 days; (2) an increased tensile ductility by 25% higher with CNFs in the optimized cement mix

Task 3: Technoeconomic analysis

- A preliminary Aspen process simulation will be completed, and equipment will be designed for the purpose of estimating capitalized cost in a process model
- •A preliminary H2A analysis will be completed for process economics including capital and variable and fixed operating costs along with a cash flow scenario and identifying a selling price of H2 to achieve an IRR of 10%. The selling price of CNFs will be determined in order to sell H2 at \$2/kg for a 10% IRR

Go/No-Go FY19

CNFs produced with L/D > 10, CH_4 : H_2 (vol%/vol%) = 0.2, and carbon wt% > 5 H_2 impurity identification and consultation with H_2 pumping experts

Future Work FY20

CNFs produced with L/D > 10, 50% CH₄ conversion, and carbon wt% > 25

TEA analysis to determine selling price of CNF to achieve $2/kg H_2$ target

Maximum crack sizes ≤100 μm under drying conditions at 28 days, increased tensile ductility, 25% lower chloride permeability, no change in set time

Any proposed future work is subject to change based on funding levels

¹Award made conditionally in 09/2019. Project official start date is 5/1/20. For the purposes of this presentation, FY19 refers to work starting 5/1/20 and ending 5/1/21

Summary

Task 1: Particle ALD catalysis system

- Reactor design and PFD complete
- Reactor build and initial testing in progress

Task 2: Cement mix design using commercial CNFs

- 1st stage concrete mix design complete
- 2nd stage mix design in progress

Task 3: Technoeconomic analysis

 Preliminary TEA in development

Fund-Receiving Collaborator		Project Roles
FORGE NANO	ForgeNano	Reactor/process design and technoeconomic analysis
NRMCA NATIONAL READY MIXED CONCRETE ASSOCIATION	National Ready Mix Concrete Association (NRMCA)	Concrete materials, mix design, and consulting

Acknowledgements

