HyMARC: Metal Hydrides for Stationary Storage Applications

2020 DOE Hydrogen Annual Merit Review

May 30, 2020

Enabling twice the energy density for onboard H₂ storage

PI: Tae Wook Heo

Team: B. Wood, S. Kang, N. Keilbart, A. Jana, P. Xiao Lawrence Livermore National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

LLNL-PRES-810838

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Project ID# ST208

Timeline	Barriers addressed		
Project start date: 03/02/2020 Project end date: 02/28/2021	 Difficulty in initial activation for hydrogenation Lack of understanding of surface mechanisms 		
Pudaat	Collaborators		
Budget	Collaborators		

Relevance

Source: https://www.energy.gov/

Source: https://apac-hydrogen.org

• TiFe-based intermetallic hydrides

- Stationary hydrogen storage applications
- Low cost, earth abundance, and reasonable capacity (~1.8 wt%)

Difficult initial activation for hydrogenation

- High temperatures and pressures
- Long incubation times
- Dopants (*e.g.*, Mn, Cr, Zr) for improving activation
- Poorly understood mechanisms

• Surface passivating oxide layer

- Potential roles in determining initial activation thermodynamics and kinetics
- Processing-dependent oxide features
- Second phase precipitates

2

Approach: Identification of key factors for activation

Oxide microstructures & chemistry

- Grain boundaries
- Grain morphology
- Oxide fractions/chemistry
- Precipitate microstructure

Oxide non-stoichiometry & crystallinity

- Ti/O ratio
- Fe/O ratio
- Crystalline/Amorphous

Oxide mechanics

- Strain in surface oxide due to underlying TiFe hydrogenation
- Strain-induced cracks

Surface oxide features play key roles in initial activation

H₂ (gas)

We focus on *chemo-mechanical effects* on *hydrogen permeation* through *realistic surface oxide microstructures*

Approach: HyMARC modeling & Collaboration

We leverage 1) HyMARC modeling capabilities, 2) LLNL's leadership-class HPC facilities, and 3) international collaboration for theory-experiment integration

Accomplishments: Surface oxide structure & chemistry Atomistic approach

We constructed atomistic models of Ti oxides and Fe oxides for investigating hydrogen-surface oxide interactions, including solubility and transport of hydrogen

Surface oxide model and chemistry will be refined by combined computational and experimental XPS analysis through collaboration with KIST.

Accomplishments: Surface oxide structure & chemistry Mesoscale approach

Experimental microstructure characterizations (SEM, TEM) will be combined to refine microstructure models through collaboration with HZG.

Accomplishments: Energetics for hydrogen solubility and transport Atomistic approach

We conducted preliminary quantum-mechanical calculations of hydrogen adsorption and binding energy for relevant oxides based on constructed atomistic structures

We are formulating a comprehensive statistical analysis method for investigating interactions (*e.g.*, solubility, diffusivity) between hydrogen and realistic oxide surface/grain boundaries

Accomplishments: Hydrogen permeation through oxide microstructures Mesoscale approach

We investigated variability of effective hydrogen permeation through TiO₂ microstructures

Impacts of grain size and grain boundary diffusion properties on hydrogen diffusion were quantitatively analyzed.

Collaboration & Coordination

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Collaboration with HZG (POC: Dr. Martin Dornheim, Germany):

- Coordinated regular-based teleconference schedules.
- Established plans for remotely mentoring graduate students.
 - 1 student for atomistic modeling & 1 student for mesoscale modeling
 - Mitigation of issues associated with delayed visit schedules of HZG students and LLNL's researchers due to COVID-19.

• Collaboration with KIST (POC: Dr. Young-Su Lee, Korea):

- Initiated discussions for coordinating collaboration for surface oxide characterizations.
- Coordinated plans for initial activities for refining/validating computational models.

Remaining Challenges and Barriers

- COVID-19 related issues
 - **Challenge**: Visit schedules of HZG students and LLNL researchers have been delayed.
 - **Mitigation**: We have established 1) plans for remotely mentoring graduate students; and 2) protocols for effective communication.

Proposed Future Work

Milestone	Description	End Date	Туре
M1: Determine candidate surface oxide species from literature data and characterization through external partnerships	Generate atomistic and mesoscale models of surface oxides to be considered for doped and undoped TiFe	05/31/2020	Quarterly Progress Measure (Regular)
M2: Complete calculations of thermodynamics of bulk oxides and key spectroscopic signatures	Perform DFT calculations of oxide thermodynamics and simulate reference XPS spectra for bulk species to be compared with experiments	8/31/2020	Quarterly Progress Measure (Regular)
M3: Complete calculations of energetics of sub- stoichiometric surface oxides and key spectroscopic signatures	Perform ab initio molecular dynamics simulations of surface oxidation to generate configurations for additional XPS simulations to be compared with experiments	11/30/2020	Quarterly Progress Measure (Regular)
M4 (Go/No-Go): Demonstrate multiscale model for predicting hydrogen transport trends	Show ability to correctly predict trends in hydrogen transport and activation time compared to experimental results for 2-3 common dopants. Use multiscale model to suggest oxide properties that could reduce activation time to < 5 hours at 100 °C and 25 bar H_2 .	02/28/2021	Annual Milestone (Regular)

Any proposed future work is subject to change based on funding levels.

Responses to Previous Year Reviewer Comments

Project was not reviewed last year.

Summary

- We have identified key chemo-mechanical factors that potentially determine initial activation of hydrogenation of TiFe.
- We focus on hydrogen permeation through realistic surface oxide microstructures, which is one of the key factors for initial activation.
- We have initiated activities for establishing collaboration with HZG (Germany) and KIST (Korea) for theory-experiment integration.
- We have carried out preliminary atomistic and mesoscale simulations.
 - We constructed atomistic models of Ti oxides and Fe oxides for investigating hydrogen-surface oxide interactions.
 - We performed preliminary mesoscale simulations for generating complex microstructures of relevant oxides.
 - We conducted preliminary quantum-mechanical calculations of hydrogen adsorption and binding energy for specific oxides (e.g., TiO₂ and Fe₂O₃), which determine initial hydrogen-surface oxide interactions.
 - We investigated variability of effective hydrogen permeation through TiO₂ microstructures due to grain size and grain boundary diffusion properties.

Technical backup slides

Technical Backup

Reduction thermodynamics of relevant oxides upon exposure to hydrogen

H₂ (gas)

 $\begin{array}{ll} 3H_2 + \text{TiO}_2 \rightarrow \text{TiH}_2 + 2H_2\text{O} & \Delta H_{\text{calculated}} = +44 \text{ kJ/mol} \\ 2H_2 + \text{TiO}_2 \rightarrow \text{Ti} + 2H_2\text{O} & \Delta H_{\text{calculated}} = +213 \text{ kJ/mol}; \ \Delta H_{\text{experimental}} = +372 \text{ kJ/mol} \\ 4H_2 + \text{Fe}_2\text{O}_3 \rightarrow 2\text{FeH} + 3H_2\text{O} & \Delta H_{\text{calculated}} = -321 \text{ kJ/mol} \\ 3H_2 + \text{Fe}_2\text{O}_3 \rightarrow 2\text{Fe} + 3H_2\text{O} & \Delta H_{\text{calculated}} = -298 \text{ kJ/mol}; \ \Delta H_{\text{experimental}} = -32 \text{ kJ/mol} \\ \end{array}$

Source: https://materialsproject.org

These thermodynamic data provide information about stabilities of relevant oxides under hydrogen environment.

