Heteroatom-Modified and Compacted Zeolite-Templated Carbons for Gas Storage

PI: Nicholas P. Stadie¹ Co-PIs: Brent T. Fultz² and Channing C. Ahn²

 Montana State University
California Institute of Technology May 30, 2020

Project ID: ST214

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Timeline

- Project Start Date: 10/01/19
- Phase I End Date: 12/31/20
- Phase II End Date: 12/31/22^a

^a Project continuation to Phase II based on achieving the Go/No-Go criterion

Budget

- Total Project Budget: \$1,093,477
 - Total Recipient Share: \$218,696
 - Total Federal Share: \$874,781
 - Total DOE Funds Spent: \$13,905^b

^bAs of 3/31/2020

Barriers

Barriers identified in the 2015 MYRDD:

- O. Lack of Understanding of (Methane) Physisorption
- A. System Weight and Volume
- B. System Cost

Partners

- Project Lead: Montana State University (materials synthesis and primary characterization)
- Subcontract: Caltech (adsorption measurements, electron microscopy)
- Partner: HyMARC (PNNL for NMR, LLNL for XAS)
- Partner: Tohoku University (materials densification)

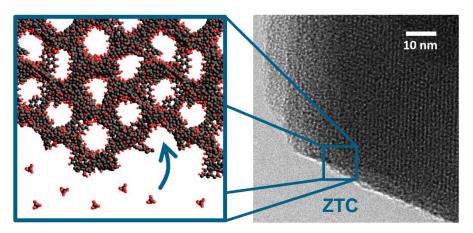
Relevance

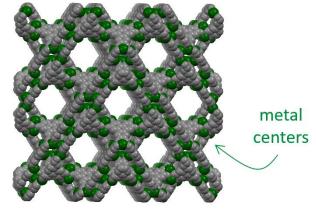
Objectives

- Volumetric Energy Density Improvement via:
 - Surface Homogeneity of the Adsorbent synthesis of zeolite-templated carbon (ZTC) as a *chemically* and *structurally* homogeneous surface for methane adsorption, toward constant/increasing binding energy upon loading up to high pressures
 - Compaction of the Adsorbent densification of ZTC into mechanically robust pellets with high bulk density, toward 1 gram of ZTC per milliliter
 - Chemical Tuning of the Adsorbent substitution of carbon by boron and/or nitrogen to tailor the binding energy toward methane, toward increase of 1-2 kJ mol⁻¹
- Cost Reduction of the Storage System via:
 - Reduction of the Working Pressure tailoring of material properties to achieve energy storage targets at < 100 bar, toward cost-effective aluminum pressure vessels
 - Cost-Effective Synthesis of ZTC development of single-step procedure to obtain large quantities of high-fidelity ZTC, toward cost reduction by 50%

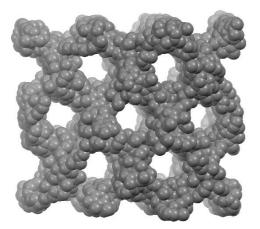
Impact in 2020

- Synthesis of native ZTC powder high surface area and pore regularity
- Confirmation of constant/increasing binding energy of methane upon loading (13-14 kJ mol⁻¹ up to 37% loading at 273 K) – methane delivery of 0.31 g g⁻¹ (100 bar)





ZTCs as Homogeneous Carbon-Based Surfaces


- Activated Carbons
 - Limited control of pore size/chemistry x
 - Modest volumetric surface area
- Metal-Organic Frameworks
 - Excellent control of pore size/chemistry

 - Heterogeneous binding sites for methane
- Zeolite-Templated Carbons (ZTCs)
 - Good control of pore size/chemistry
 - High volumetric surface area \checkmark
 - Homogeneous binding sites for methane \checkmark

Metal-Organic Framework

Zeolite-Templated Carbon (metal-free)

Approach

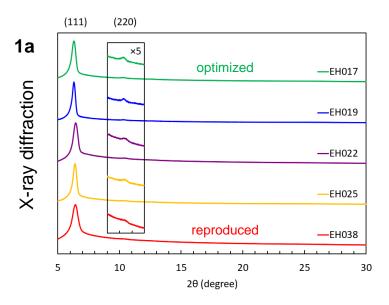
ZTCs as Homogeneous Carbon-Based Surfaces

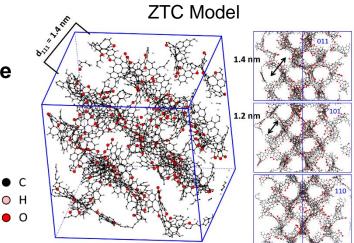
- Barrier "O" Addressed: What is the role of the metal-coordination clusters in the thermodynamics of CH₄ storage in designed, carbon-based porous frameworks?
 - Metal-based sites serve as *strong binding* sites in MOFs
 - Carbon-based linkers serve as *moderate binding* sites in MOFs heterogeneity
 - Open-pore space serves as *low binding* sites in MOFs
 - Metal-free porous carbon frameworks (ZTCs) exhibit *homogeneous* binding energy, leading to *higher CH₄ delivery*

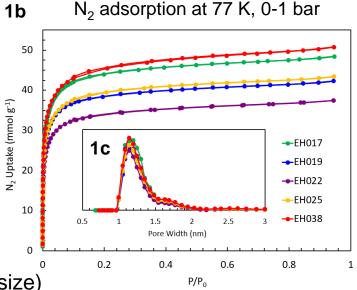
Go/No-Go 1: produce pelletized ZTC with \geq 180 v/v CH₄ delivered at 273 K, 5-100 bar

- Barriers "O/A" Addressed: What is the role of boron or nitrogen inclusions in the thermodynamics of CH₄ storage in designed, carbon-based porous frameworks?
 - Does boron increase or decrease binding energy?
 - Does nitrogen increase or decrease binding energy?

Go/No-Go 2: produce ZTC with *increased homogeneous* binding energy via B-/N- doping to achieve pelletized ZTC with ≥ 180 v/v CH₄ delivered at 273 K, 5-65 bar

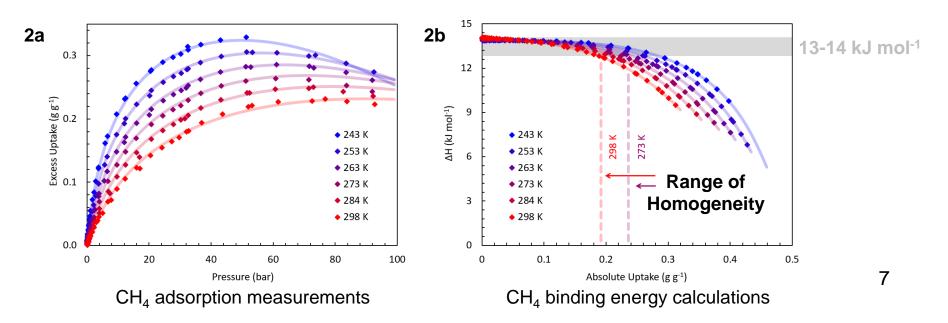

Accomplishments & Progress


6


Homogeneous Structure of ZTC

- Native Powder ZTC Synthesized at the Gram Scale
 - High template-fidelity in optimized samples (1a)
 - Surface area ≥ 3600 m² g⁻¹ (1b)
 - Homogeneous pore size of ~1.2 nm (1c)

- **1a** X-ray diffraction patterns (establish pore-to-pore distance homogeneity)
- 1b-c N₂ adsorption at 77 K (establishes high surface area and homogeneous pore size)



Homogeneous Binding Energy of CH₄ on ZTC

- Methane Adsorption Measurements at 243-298 K (2a)
 - Excess methane uptake of 0.33 g g⁻¹ at 243 K, 51 bar
 - Excess methane uptake of 0.26 g g⁻¹ at 273 K, 61 bar
 - Deliverable "total" methane uptake of 0.314 g g⁻¹ at 273 K, 5-100 bar
- Constant Enthalpy of Adsorption of CH₄ on ZTC (2b)
 - Enthalpy of adsorption (ΔH) is a proxy for binding energy
 - $\Delta H = 13-14 \text{ kJ mol}^{-1}$ at 273 K, across 0-37% CH₄ uptake

Response to Past Comments

(this project was not reviewed last year)

Collaborations

Montana State University (lead)

- ZTC native powder synthesis
- Heteroatom-doping of ZTC
- Primary materials characterization
- Adsorption measurements (Sieverts III)

California Institute of Technology (sub)

- Adsorption measurements (Sieverts I and II)
- Transmission electron microscopy

Tohoku University (Prof. A. Gabe)

Densification of ZTC

HyMARC* – PNNL (Dr. S. T. Autrey)

• High-pressure ¹¹B solid-state NMR

HyMARC* – LLNL (Dr. A. A. Baker)

• X-ray absorption spectroscopy (B K-edge)

*within the DOE Hydrogen and Fuel Cells program

Remaining Challenges

Densification of ZTC, Maintaining Homogeneity

- Native Powder ZTC Exhibits a Low Tap Density of 0.18 g mL⁻¹
 - Volumetric methane capacity in powder ZTC is low (< 80 v/v at 273 K, 100 bar)
- Densification via Hot-Pressing is Possible, up to ~1 g mL⁻¹, but:
 - How does densification affect adsorption capacity?
 - How does densification affect binding energy homogeneity?
 - <u>Challenge</u>: produce ZTC with high density, maintaining capacity and homogeneity

Heteroatom-Doping of ZTC, Maintaining Homogeneity

- Boron/Nitrogen Incorporation within ZTC is Possible, but:
 - How does boron-doping affect adsorption capacity?
 - How does nitrogen-doping affect adsorption capacity?
 - How does heteroatom modification affect binding energy homogeneity?
 - <u>Challenge</u>: produce ZTC with high B/N content, maintaining homogeneity

Future Work

Densification of ZTC, Maintaining Homogeneity

- Prepare ZTC Pellets at Varying Densities up to ~1 g mL⁻¹
 - Optimize conditions to achieve mechanically robust pellets
 - Measure methane adsorption between 243-298 K, 0-100 bar
 - Characterize binding energy as a function of pellet density and pellet structure:
 - volumetric surface area
 - pore density, pore-size distribution

Heteroatom-Doping of ZTC, Maintaining Homogeneity

- Prepare ZTC Powders at Varying Compositions up to BC₃/NC₃
 - Complete commissioning of heteroatom-doping reactor
 - Prepare preliminary samples containing at least 5 mol% boron/nitrogen
 - Measure methane adsorption between 243-298 K, 0-100 bar
 - Characterize binding energy as a function of boron/nitrogen content

Combine Densification/Doping to Meet Go/No-Go 1

• 180 v/v deliverable CH_4 storage at 273 K, 5-100 bar

Note: any proposed future work is subject to change based on funding levels. ¹¹

Technology Transfer

(none to date)

Summary

Objectives:

- Improvement of volumetric energy density of adsorbed natural gas storage, via:
 - Densification of zeolite-templated carbon (ZTC)
 - Heteroatom-doping of ZTC

Relevance:

- The role of metal/metal-oxo clusters in metal-containing porous materials on the thermodynamics of methane storage is severely under-investigated
- ZTC represents a metal-free carbon framework for direct investigation of effects of *surface homogeneity* on deliverable methane storage

Approach:

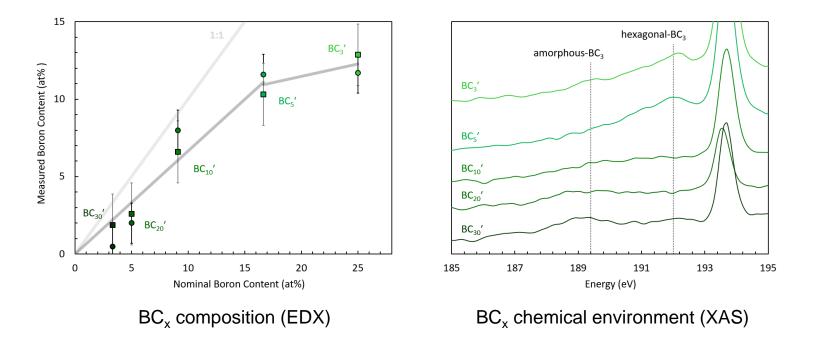
- Densification of ZTC via hot-pressing
- Tuning of ZTC composition by heteroatom-doping

Accomplishments:

- Successful synthesis of high-fidelity ZTC
- Homogeneous binding energy of CH₄ on ZTC demonstrated

Collaborations:

• Caltech, Tohoku University, and HyMARC (PNNL and LLNL)



Accomplishments & Progress

Heteroatom Doping: Boron-Doped Graphitic Carbon

- Direct Synthesis of Bulk Turbostratic BC₃
 - Closed, one-step reaction of benzene (C_6H_6) and boron tribromide (BBr₃)
 - Structural characterization: X-ray diffraction (XRD), Raman spectroscopy
 - Composition: energy-dispersive X-ray spectroscopy (EDX) maximum of 13 at% B
 - Integrated collaboration: X-ray absorption spectroscopy (XAS) with HyMARC (measurements performed at LBNL with partners from LLNL)

