

GINER ELX, Inc., 89 Rumford Ave, Newton, Ma. 02466

2020 DOE Hydrogen & Fuel Cells Program Review Presentation

ANODE - BOOSTED ELECTROLYSIS

PI: Monjid Hamdan

Giner ELX, Inc.

89 Rumford Ave. Newton, Ma. 02466 Project ID: TA031

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start: Jan. 1, 2019
- **Project End:** Dec. 31, 2020
- Percent Complete: 45%

Budget

- Total Project Budget: \$2.20MM
 - Total Federal Share: \$1.74MM
 - □ **Total Recipient Share:** \$0.46MM
 - Total DOE Funds Spent*: \$0.8 MM

* As of 03/31/19

Technical Barriers (H2@Scale)

- Renewable H₂ transportation fuel pathway challenged by:
 - □ Capital costs, reliability, energy consumption, and footprint

Characteristics	Units	2018 Status	2022-25 ¹ Targets
H ₂ Cost (product, delivery, comp.)	\$/gge	13-16	7
Energy Consumption	kWh/kg	7	-
Station footprint	ft²	18,000	10,800 (40% reduction)

¹Target for the delivered cost of hydrogen generated from renewable feedstocks of \$7/gge by 2025 and a 40% reduction in station footprint from the current baseline by 2022. DE-FOA-0001874 FY18 Hydrogen and Fuel Cell RD Funding Opportunity Announcement, Topic 2A, pg. 13

Partners

- Pacific Northwest National Laboratory (National Lab) Robert Weber, Ph.D., Jamie Holladay, Ph.D.
 - Catalyst Synthesis, Characterization, Testing & Validation
- Oberon Fuels, Inc. (Industry)
 Elliot Hicks, CEO Oberon Fuels, Inc.
 DME Pilot Plant, Technology Implementation & Validation
- Giner ELX, Inc. (Industry)
 Electrolyzer Stack & System

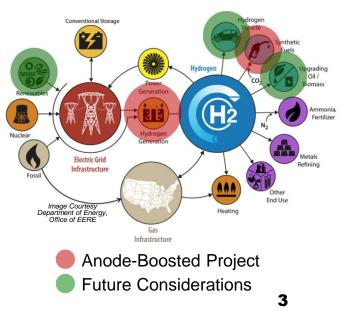
Relevance

Overall Project Objectives

- Electrolysis of Organic Anolytes
 - Hydrogen production for DME Fuel
 - Hydrogen fuel for use by FCEVs
- Wastewater Processing : Purification of non-potable water
- Improved Efficiency: Lower power requirements than water electrolysis
 - Energy to produce hydrogen via electrolysis is reduced by > 50% as compared to water electrolysis while simultaneously oxidizing the organic compounds in the waste stream

FY20 Objectives

- Develop catalysts/membrane for use in organic electrolysis to improve efficiency, cost, and durability in organic electrolysis
 - Demonstrate cell performance of ≤ 0.8V per cell at a current density of ≥300 mA/cm² (i.e., Operating at a cell potential that is 50% less than a conventional electrolysis cell)


Impact

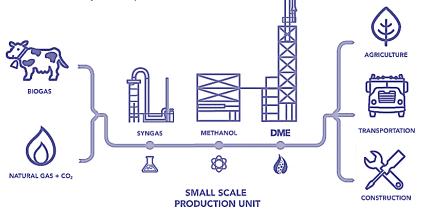
 Successful deployment of an "Anode-Boosted" Electrolyzer would reduce the amount of energy required to produce hydrogen (via electrolysis) by 50% while simultaneously oxidizing the organic compounds from an adjacent waste stream (Wastewater Purification)



An Oberon DME Fuel Production and Distribution Facility

Synthetic fuel production from waste hydrocarbon feedstock while leveraging the existing infrastructure of the oil & gas industry

Anode-Boosted Electrolysis Background



Anode-Boosted Electrolyzer (Repeating Cell unit)

- Organic anolyte transported across sacrificial membrane(s)
- Organic electrochemically decomposed to produce hydrogen
- CO₂ neutral process (closed carbon cycle)

Anode-Boosted Related Benefits in DME Processes

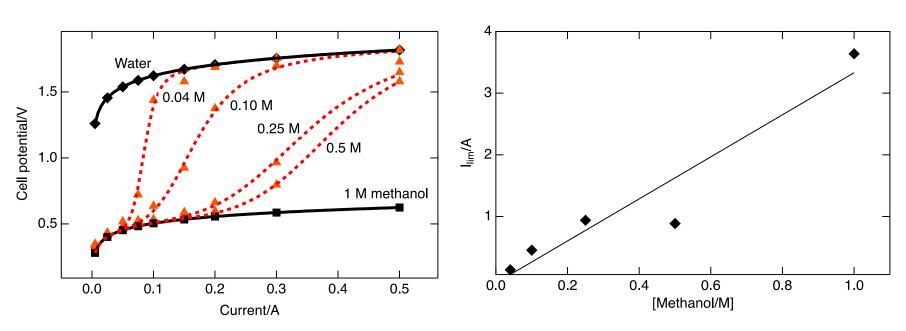
- Dimethyl Ether (DME), Oberon Process
 - Low-cost, low-carbon, zero-soot alternative to diesel
 - Reduces greenhouse gases by 68-101% over diesel
 - First biogas-based fuel approved under the US EPA's Renewable Fuels Standard
 - □ Liquid under moderate pressure, eliminates need for high-pressure containers
 - Can be used to upgrade gasoline or as a hydrogen carrier (when FCEVs are more widespread)

Current Oberon DME fuel production process

- Hydrogen generated is incorporation into hydrogen-rich fuels for internal combustion engines (DME)
- Syngas is deficient in hydrogen, requires renewable hydrogen sources

Approach: Program Overview

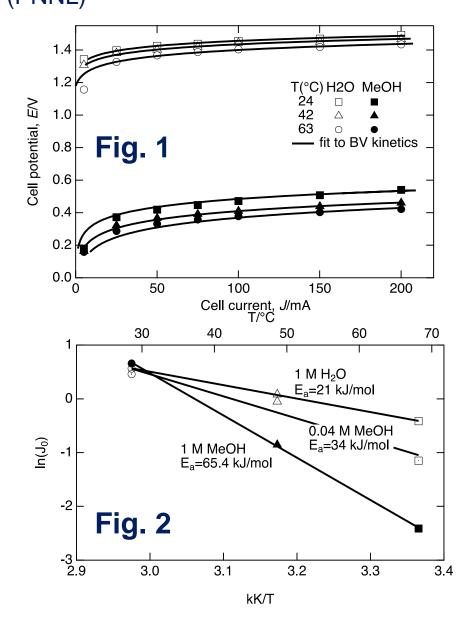
rom renewable t\$7/gge	Catalyst & Membrane Optimization	Catalytic anodes: Complete synthesis and fabrication for use in Anode-Boosted electrolyzers Membranes: Develop membranes for use with organic containing anolytes. Demonstrate a minimum of 200 hours of operation without membrane fouling Performance: Demonstrate electrolysis of organic containing anolytes at a cell voltage of $\leq 0.8V$ (at ≥ 300 mA/cm ²)	BP 1
Hydrogen generated from renewable feedstocks of <\$7/gge	Scale-up	Boosted electrolyzer. Develop batch catalyst process	8
Hydro	Demo	 Integration in DME Process Prototype Demonstrate Anode Boosted flow electrolyzer that produces 80 sLPM of H2 (10 kg/day) Over target: system capable of following the dispatching of renewably sourced electricity for one week. 	BP


Approach: BP1 Tasks & Milestone Progress

Task No.	Task Title	Mile- stone	Milestone Description (Go/No-Go Decision Criteria)	Progress Notes	Percent Complete
1	Site sampling and analysis	M1.1	Develop list of organic anolytes and industrial processes that are applicable for use with anode-boosted electrolysis	Winter sampling completed. Summer sampling completed.	100%
2	Anode catalyst synthesis, characterizatio n and testing	M1.2	Complete synthesis and fabrication of catalytic anodes. Synthesize anode catalyst and electrode structures for use in Anode-Boosted electrolyzers	Synthesizing of anode catalyst and electrode structures completed	100%
3	Membrane selection for PEM-based electrolyzer	M1.3	Develop membranes for use in organic containing anolytes. Demonstrate a minimum of 200 hours of operation without membrane fouling	PFSA currently in use. Upcoming: sPEEK	100%
4	Preparation and Testing of Membrane Electrode Assemblies	M1.4	Demonstrate performance of Anode- Boosted electrolyzer to oxidize an organic containing anolytes at a cell voltage of ≤ 0.8V	Test Stand: 100% complete Preliminary AB stack Design complete (Active area of 50 cm ² for catalyst & membrane evaluations)	100%
Go/No-Go Decision Y1Demonstrate Anode-Boosted Electrolyzer cell performance of ≤ 0.8V per cell at a current density of ≥300 mA/cm² (Operating at a cell potential that is 50% less than a conventional electrolysis cells).		Demonstrated cell performance of 0.749V/cell at a Current Density of ~1A/cm ²	\checkmark		

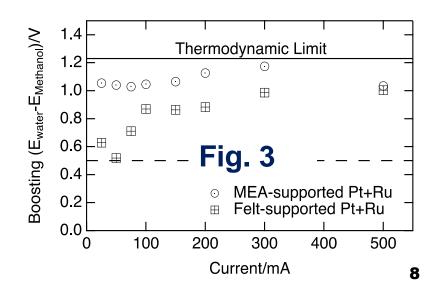
Progress- Site Sampling and Analysis (PNNL)

Anode boosting electrolysis of various Methanol concentrations


- Representative anolyte samples evaluated in anode-boosted cell
 - □ Methanol concentration level: 0.04 to 1.0M (0.16 to 4.1 % by volume)
 - Minimum chemical oxygen demand (COD) of waster water near Oberon DME plant measured at 1900 mg/L (0.16% Methanol)
 - Methanol electrolysis is current limited at lower concentrations

Limiting current density for the electrolysis of the dilute solutions of methanol

NERELX


Progress – Catalyst Synthesis, Characterization, and Evaluation (PNNL) Demonstrated improved perform

Demonstrated improved performance at elevated temperature, increased methanol concentration, and enhanced catalyst architectures (& supports)

NERELX

- Fig. 1 Effect of temperature on the electrolysis of pure water and 1 M methanol anolytes at three temperatures
- Fig. 2 Arrhenius graph comparing the effect of temperature on activation energy (E_a) and Current (J_o) for water with that of dilute methanol (0.04 M and 1.0 M)
- Fig 3 Comparison of a commercial anode with one made by supporting the catalyst on a carbon felt for the electrolysis of 1.0 M methanol

Progress – Anode-Boosted Stack Evaluation

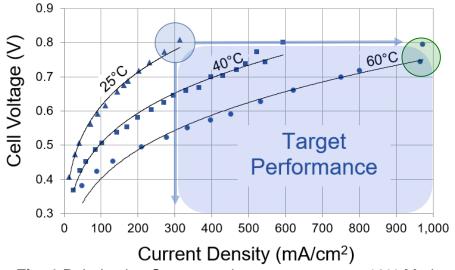
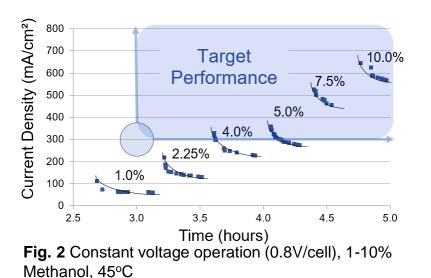
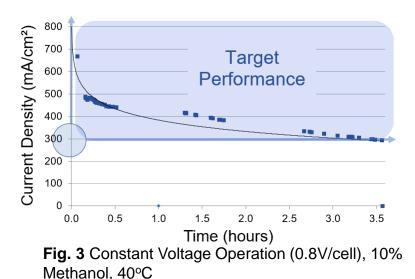
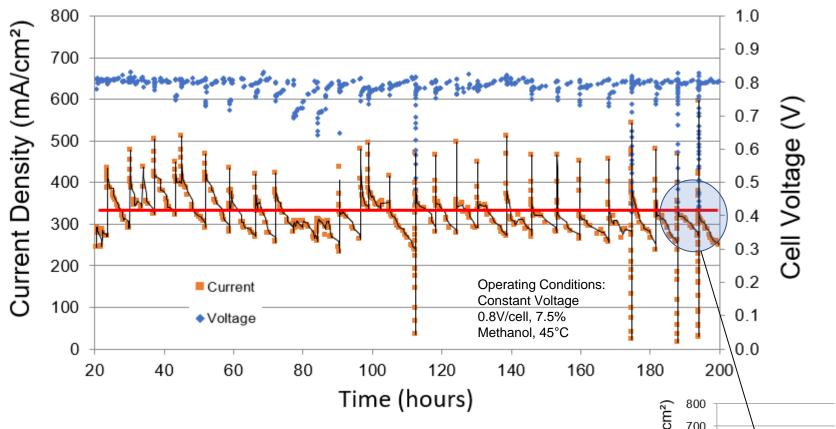



Fig. 1 Polarization Scan at various temperatures, 10% Methanol

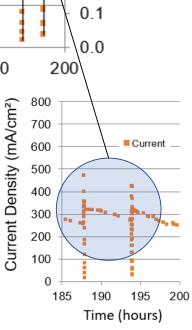


Milestone Target Achieved


- Target: Demonstrate Anode-Boosted Electrolyzer cell performance of ≤ 0.8V/cell at a current density of ≥ 300 mA/cm²)
 - Performance Achieved:

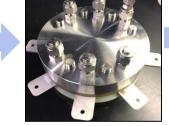
0.749 V/cell at 950 mA/cm²

- Fig. 1 Improved activity at higher temperature and concentration
- Fig. 2 Ideal conditions: 4-10% methanol at 40-60°C
- Fig.3 Reduction in current density as organic anolyte is depleted



Progress – Membrane Lifetime/Membrane Fouling

Milestone Target Achieved


- Target: Develop MEAs for use in organic containing anolytes Demonstrate a minimum of 200 hours of operation without membrane fouling
 - \square Membrane operated for > 200 hours
 - Daily on/off cycle, methanol solution replenished daily
 - 0.8V/cell, 7.5% Methanol, 45°C
 - □ Stable Performance: ≥ 300 mA/cm² at start-up, Current drops as methanol is depleted

Stack & Test Stand / Feasibility Studies

- Anode-boosted 6-Port stack design completed/assembled
 - □ Active area of 50 cm². Future design will be scaled-up to 300 cm²
- Utilizes dual-membrane cell architecture
 - □ Stack can accommodate low to high organic concentrations:
 - □ Organic anolyte concentrations \leq 1.0 M, single membrane required
 - □ Organic anolyte concentrations > 1.0 M, dual membrane required
 - Secondary membrane imbibed with additive to mitigate swelling

Anode-Boosted Test Stand

Conc.

High Conc

Sacrificial

Membrane

C_xH_xO_x

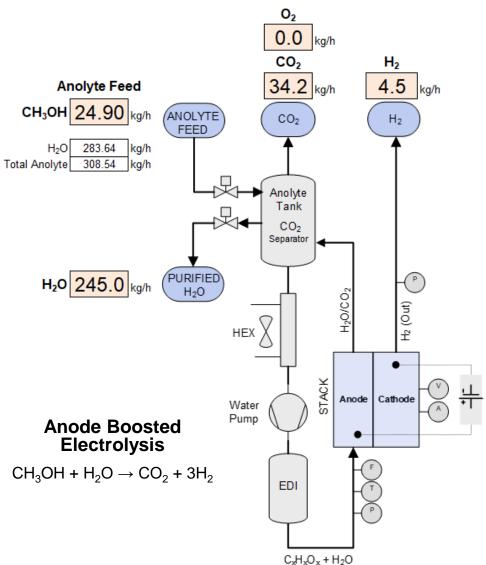
H₂O

Anode-Boosted electrolyzer test stand completed/operational

 H_2

- Designed to operate prototype and full- and pilot-scale Anode-Boosted electrolyzer stacks
- System Feasibility Studies:
 - Electrolysis reaction kinetics

PEM

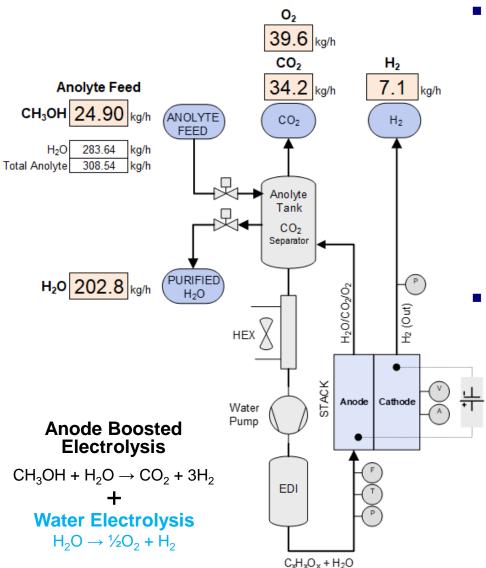

- Destruction of the organic impurities
- Durability of the catalyst/membrane
 - Membrane analysis: detect leaching, fouling, oxidative degradation

Process Flow –

Anode Boosted Electrolysis

- Electrical consumption: 21 kWh_e/kg-H₂
 - □ > 56% electrical energy saving as compared to water electrolysis: 21 vs. 48 kWh_e/kg-H₂
- Faradaic losses (CH₃OH crossover)
 - Increases with temperature and concentration
 - Diminishes at higher operating current densities
 - Crossover current density, ~50-100 mA/cm²
 - □ Membrane dependent
- Ideal operating conditions: 50-60°C, 2M CH₃OH, 0.5 to 0.95 A/cm²
- PFD based on 100 kW stack

Energy Consumption


Energy	21.0	kWh/kg-H ₂
--------	------	-----------------------

Power	94	kW
Cell Voltage	0.75	Volts/cell
No. of Cells	100	Cells
Active Area	1250	cm ²
Current Density	1.0	A/cm ²
Current	1250	Amps
xover CD	0.052	A/cm ²

Current Density	Cell Voltage	CH₃OH x-Over	Electrical Energy
A/cm ²	V	mA/cm ²	kWh _e /kg-H ₂
0.00	0.00	195	-
0.25	0.51	98	22.3
0.50	0.62	80	19.6
0.75	0.70	72	20.5
1.00	0.75	52	21.0
>1.0	1.48+	-	-

Process Flow –

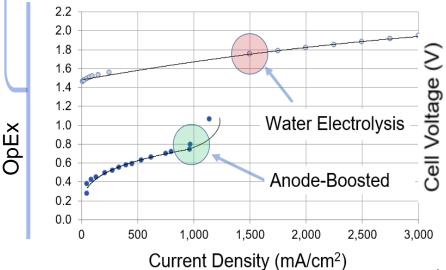
Anode Boosted Electrolysis + Water Electrolysis

- Anode-Boosted Electrolysis can be operated in water electrolysis mode if/when additional hydrogen production is required for the DME process:
 - □ Electrolysis of CH₃OH and water at potentials >1.5V/cell
 - Electrical energy estimate for 'Mixed Electrolysis': 46.5 kWh_e/kg-H₂ due to higher cell voltage for water electrolysis
 - Efficiency improvement to 28.0 kWh_e/kg-H₂ with 'mixed electrolysis' via pulsing stack or use of two separate stacks
 - O_2 Production: 39.6 kg/h as compared to 55.7 kg/h with straight water electrolysis

Energy Consumption			
Energy	46.5	kWh/kg-H ₂	
Power	328	kW	
Cell Voltage	1.75	Volts/cell	
No. of Cells	100	Cells	
Active Area	1250	cm ²	
Current Density	1.5	A/cm ²	
Current	1875	Amps	
xover CD	0.03	A/cm ²	

Technoeconomic Analysis

Total Cost of H ₂				
H ₂ Cost Contribution	Current Status (\$/kg)			
	DME Fuel	H ₂ Fuel		
Capital Costs ¹	1.95	1.30		
Feedstock Costs ²	0.81	1.96		
Fixed O&M	0.70	0.70		
Variable Costs	0.02	0.02		
Total Hydrogen Production Cost	3.48	3.98		
Delivery (CSD) ³	0.00	2.24		
Total H ₂ Cost	3.48	6.22		
Total Cost of	H ₂ in DME	Fuel		
Total Hydrogen Production Cost	3.48	3.98	Ρ	
Delivery (CSD)	Not required for DME			
Total H_2 Cost per kg of DME	0.45	0.52		
¹ 20 year lifetime and design Canacity: 100 kg-H ₂ /hr, assumes large scale				


¹20 year lifetime and design Capacity: 100 kg-H₂/hr, assumes large scale production (500 units/yr). Larger stacks (higher cell count) required for anode-boosted stacks operating at 1 A/cm² vs. 1.5A/cm²+ for water electrolysis stack. ²Anode-Boosted operation at 21 KWh/kg-H2, and water electrolysis operation at 50.5 kWh/kg, electrical cost of \$0.039/kWh. ³Compression cost based on 40 bar output. DME process does not require high-pressure H₂, FCEV; 900 bar

Demonstration path to achieve < \$7/kg-H₂ with renewable feedstock

		Anode Boost	Water Electrolysis
1.1.0.1.1.0 1.1.0.1.1.0 1.1.0.1.0.0 1.1.0.1.0	H ₂ prod (kg/h)	100	100
	# of Cells*	2100	1400
	CD (A/cm²)	<1.0	≥1.5
	Energy (kWh _e /kg)	21	≤50.5
	H ₂ prod (kg/h)	100	100
	Catalyst	Pt/Ru	Pt/Ir

⁴Costs are based on large active area stacks (1250 cm²)

CapEx⁴

14

Collaborations/Acknowledgements

Giner ELX, Inc. -Monjid Hamdan -Prime	Industry	Electrolyzer stack/system engineering, prototype development and deployment
Oberon Fuels -Elliot Hicks, CEO Oberon Fuels, Inc -Subcontractor	Industry	Hydrogen generation for incorporation into hydrogen-rich fuels for internal combustion engines (DME)
Pacific Northwest National Laboratory (PNNL) -Robert Weber, Ph.D., -Jamie Holladay, Ph.D. -Subcontractor	National Lab	 Catalyst Development for Anode-Boosted Electrolysis Analyze/Characterize samples using standard methods (COD, elemental analysis, pH) Synthesize/Procure catalyst powders (PNNL) Prepare anode catalyst powders consisting of mixed metal oxides Procure catalyst: mixed metal oxides & boron-doped diamond, boron-doped nanotubes, and nitrogen-doped nanotubes Fabricate electrode structures (GINER/PNNL)

Department of Energy- DOE Fuel Cell Technologies Office (FCTO)

-Michael Hahn, DOE Technology Manager -Dr. Sunita Satyapal

Summary

- BP1 Milestone Achieved & Exceeded:
 - □ Objective: Achieve cell performance of $\leq 0.8V$ per cell at a current density of ≥ 300 mA/cm²
 - Achieved 3x current density: 0.8V at 950 mA/cm²

Membrane/Catalyst

- Successfully engineered membranes that reduce fouling (and swelling) when used with organic-anolytes
- PNNL completed synthesis of anode catalyst on supported structures for use with organic anolytes
 - Demonstrated 20% improvement in cell voltage over conventional catalyst structures

Stack

- Anode-Boosted stack design complete
 - Active area of 50 cm², to be scaled to 300 cm² for Oberon process
 - Stack design enables electrolysis of organic anolytes with wide concentration ranges, that can accommodate current-limiting conditions of anode-boosted electrochemical reactions

System

- Test Stand: 100% complete and operational
 - Completed catalyst & membrane evaluations, reaction kinetics
 - Detailed process flow diagrams
 - Used to model prototype system at Oberon site

Techno-economic Feasibility Studies

- Estimated cost of H₂ (levelized) from renewable feedstocks at \$6.22/kg-H₂ (Target: \$7/gge by 2025)
 - Demonstrated path to further reduce with improved efficiency of PNNL catalyst

Future Plans & Challenges (FY2020-21)

Future Plans*

- Membrane/Catalyst:
 - Implement use of PNNL's supported (carbon felt) catalyst structure to further improve cell performance
 - Complete development and demonstration of alternative membranes to reduce permeation, improve efficiency
 - Scale-up select anode catalyst, membrane, and stack hardware (to 300 cm²) for use in 80 sLPM-H₂ (10 kg/day) Anode-Boosted electrolyzer

System:

- Demonstrate pilot-scale Anode-Boosted electrolyzer with cell potential <50% than conventional electrolysis</p>
- Demonstrate system capability of following the dispatching of renewably sourced electricity for one week

Complete Techno-economic Feasibility Studies

Demonstration path to achieve $< \frac{5}{kg-H_2}$ (levelized cost)

Future Challenges

- Cost of Ru has increased significantly (in small quantities).
 - Replace with carbon-felt supported Ru developed at PNNL (equitable cost). This will require additional validation studies

Responses to Previous Year Reviewers' Comments QGINERELX

This project was not reviewed last year

Publications and Presentations

Publications/presentations include:

- Andrews, E. M.; Egbert, J. D.; Sanyal, U.; Holladay, J. D.; Weber, R. S. Energy & Fuels, Anode-Boosted Electrolysis in Electrochemical Upgrading of Bio-oils and in the Production of H₂, 2020, 34, 1162-1165, 10.1021/acs.energyfuels.9b02524.
- Advancements in PEM Electrolyzers and Uses in the Renewable Energy Economy, AIChE Meeting, Orlando FI. Nov. 11th, 2019
- Electrolyzers as Utility Assets- Demonstration of Integrated Hydrogen Production and Consumption for Improved Utility Operations, 2019 FCTO Program Review at Giner, Newton, MA. Sep. 25th, 2019