HydroGEN: High-Temperature Electrolysis

D. Ding, G. S. Groenewold, H. Ding, M. Li, M. Tucker, R.D. Boardman

Presenter: Dong Ding

Idaho National Laboratory

DOE Hydrogen and Fuel Cells Program

Project WBS 2.7.0.1002 INL HydroGEN 2.0

2021 Annual Merit Review

Project ID # P148B

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Goal: Accelerate foundational R&D of innovative materials for advance water splitting (AWS) technologies to enable clean, sustainable and low-cost (< $2/kg H₂) hydrogen production.

HydroGEN is focused on early-stage R&D in H₂ Production

Website: https://www.h2awsm.org/
HydroGEN HTE Overview

Timeline and Budget

HydroGEN 1.0
- Project Start Date: **October 2017**
- FY21 DOE Funding: $240K
- Total DOE Funds Received to Date: $2,627.5K

HTE Supernode
- Project Start Date: **December 2020**
- FY21 DOE Funding (if applicable): $550K
- Total DOE Funds Received to Date: $950K

HydroGEN 2.0
- Project Start Date: **November 2020**
- FY21 DOE Funding (if applicable): $0K
- Total DOE Funds Received to Date: $506.5K

Seedling FOA Projects
- **HydroGEN Admin budget in this category**
 - Project Start Date: **October 2017**
 - FY21 DOE Funding (if applicable): $0K
 - Total DOE Funds Received to Date: $322.2K

Barriers Addressed

- limited cell durability
 - electrolyte|electrode coarsening
 - cation / metal migration
 - pore formation
 - non-conductive phase formation
 - delamination & cracking
 - higher-than-desired production/replacement costs

Partners

- **PI:** Dong Ding, INL
- **Co-PIs:**
 - Dave Ginley (NREL)
 - Brandon Wood (LLNL)
 - Josh Sugar (SNL)
 - Mike Tucker (LBNL)

- **Nexceris**
- **UTRC**
- **Saint-Gobain**
- **Redox**
- **Univ. Connecticut**
- **West Virginia Univ**
- **Univ. South Carolina**
- **Northwestern University**

HydroGEN: Advanced Water Splitting Materials
HTE Relevance/Potential Impact

- HFTO: Expectation that High-Temperature Electrolysis will be a major source of H₂
 - Zero greenhouse gas emissions
 - Clean energy infrastructure
 - Compatible with sources of uninterruptable electricity (nuclear) and renewable electricity
 - Progressing from carbon-emitting technology (natural gas reforming) to zero-carbon emitting technology
 - Potential for next-generation, high paying jobs with excellent diversity and inclusion potential
 - Environmentally benign operations, eliminating environmental justice concerns

- Overcoming technology barriers: progress toward improved cell durability leading to competitive economics resulting from lower device costs

https://www.energy.gov/eere/fuelcells/hydrogen-production-pathways
HTE Approach

• **Consortium**
 – Interactive, coordinated tasks: fabrication, operation, characterization and modeling
 – Leverage high-powered capability at National Labs
 – Generate a basis for development of new materials and operating strategies

• **Key Milestones**
 – Repeatability of aged button cells - completed
 – Identification of degradation mechanisms - completed
 – Development of initial atomistic models capable of thermodynamic prediction – completed
Accomplishments / Progress: Nodes for Project Support

Nodes for HTE

• 9 @ readiness level 1
• 22 @ readiness level 2
• 9 @ readiness level 3

Node Classification
6x Analysis
6x Benchmarking
20x Characterization
13x Computation
6x Material Synthesis
5x Process and Manufacturing Scale-Up
5x System Integration

10 nodes used by current HTE projects
Accomplishments and Progress: Northwestern University

PI: Scott Barnett

Goal and approach
• Goal: Improved o-SOECs that provide stable long-term operation at high current density
• Approach: Degradation mechanisms in oxygen-ion solid oxide electrolysis cells (o-SOECs) are studied using accelerated life testing with varying conditions, materials, and cell designs
• Theory combined with experiment to develop a basic understanding of degradation mechanisms, guide mitigation strategies

Accomplishments in BP2
• High performance solid oxide electrolysis cells developed and shown to operate at high current with low degradation rate of < 20 mV/kh (M5.1, M6.2, BP2 go/no-go target)
• Theory shows effect of Gd-doped Ceria electrolyte layers on oxygen pressure and interfacial fracture (M8.1)
• Initial theory development for predicting Ni migration in Ni-YSZ fuel electrodes (M8.1)
• Substantial reduction in degradation rate of metal-supported electrolysis cells by >100% (M6.1)

Supporting labs: LBNL & INL

Focus of BP3
• Life testing of solid oxide electrolysis cells to determine how operating parameters and cell materials/structures affect different degradation mechanisms (M10.1)
• Completed development of phase-field model of Ni migration in Ni-YSZ under cell operation (M12.1)
• Correlate experiment with theory to develop improved degradation models (M10.1 & M12.1)
Developed suspension plasma spray (SPS) H₂-electrode on porous metal with desired composition and >20% porosity.

BP2 Main Accomplishments:
- Demonstrated bilayer (H₂ electrode & electrolyte) by plasma spray on porous metal.

Approach:
- Integrate low-cost fabrication, material optimization and modeling.
- Target performance >1.0 A/cm² at 1.4 V and ≤650 °C

Remainder BP2 Focus:
- Goal: 0.9 V OCV & >0.8 A/cm² at 1.4 V and T≤650 °C
- Achieved good OCV, further SPS optimization for better I-V performance
- Co-sintering:
 - Improve metal sintering to avoid delamination
 - Improve OCV

Concept:
- Proton conducting electrolyzer
- 550-650 °C

Plasma Spray
Co-sintering
Material optimization
p-SOEC cell modeling

HydroGEN: Advanced Water Splitting Materials
Project Goals: To address oxygen-ion conducting SOEC's degradation problem by developing an isostructural bilayer oxygen evolution reaction (OER) electrode that is electrocatalytically active and Cr-tolerant.

Approaches:
a) Process optimization of isostructural bilayer OER electrode for scale-up fabrication;
b) Manufacturing larger bilayer planar and tubular cells and performance demonstrations at Bench-scale single-planar cell level;
c) Cell performance demonstrations at pilot-scale 2-cell planar stack and single tubular cell level;
d) Understanding performance degradation mechanisms through Multiphysics modeling.

Key technical milestones (BP1):
- Finalize bilayer OE loading and calcination condition
- Finalize OER testing fixture
- Meet button-cell performance: ≤0.15 V OER overpotential at 1 A/cm² for 1 kh @ 700 °C
- Establish a Multiphysics model to describe OER degradation mechanisms

Accomplishments in BP1
- Obtained bilayer oxygen electrode (OE) loading, calcination temperature and ASR relationship.
- Demonstrated a new methodology to characterize OER overpotential.
- Achieved bilayer OE OER overpotential <0.15 V at 1 A/cm² and 700°C for ~800 hours in Cr-atmosphere.

Focus of BP2
- Study the effect of partial pressure of oxygen on OER polarization ASR.
- Study reversible SOEC/SOFC operation at different current densities.
- Demonstrate long-term stability for 2000 hours in the presence of Cr at 1 A/cm² and 700°C.
- Identify failure modes and develop mitigation solutions.
Accomplishments and Progress:
Redox Power Systems (BP1) Co-PI: Colin Gore, Bryan Blackburn

Goal and approach
- Redox is using multilayer electrolytes and functional layers to overcome both stability and Faradaic efficiency (FE) challenges in proton conducting SOECs (p-SOEC) by combining materials with different advantages using sputtering, pulsed laser deposition (PLD), and conventional steps
- The approach hinges on using Redox’s mature o-SOFC components as substrates for p-SOECs by sputtering and screen printing
- No single electrolyte and electrode offer good stability in high steam (~50%), high Faradaic efficiency (>90%), and acceptable processing temperature (≤1500°C), so Redox is combining materials with different advantages in different layers of the SOEC using scalable sputtering
- Support from INL (electrolyte and steam electrode materials) and NREL (PLD multilayers) nodes

Accomplishments in BP1
- Stable protective layers deposited by sputtering, tested >200 hours in 50-100% steam at 500°C (no XRD shift or 2nd phase), meeting project milestone M2.1
- Improved Redox o-SOFC support layers for sputtered p-SOECs, testing multilayer cells, reducing defects in later thin film layers
- With INL, made steam electrodes for increased stability in high steam operation compared to PrBa_{0.5}Sr_{0.5}Fe_{0.5}O_{5+δ} (PBSCF)
- With NREL, multilayer electrolytes have been deposited by PLD to evaluate alternative materials. PLD cells are being tested
- Developed automated distribution of relaxation times (DRT) analysis tools for thin film p-SOECs

Focus of BP2
- The goals of BP2 are toward the further improvement of performance parameters, e.g., ASR at 1.4V, FE, OCV
- Deposition parameters will be altered to improve the microstructure and thickness ratio of the electrolytes and functional layer
- Modeling of electronic species (protons, electrons, holes, O2-) will inform the thickness targets for 500 °C operation at high FE
- Improvements in the cell operational stability will continue into BP3 to reach <4 mV/kh at ≥ 1A/cm² at 1.4V

Metric	State of the Art	Expected Advance
Stability | 10-30 mV/kh | < 4 mV/kh
FE | <70% (BZY) | > 95%
Cost | > $4/kh H₂ | < $2/kg H₂
Accomplishments and Progress: Nexceris, LLC (BP1)

Project Goal
Develop comprehensive coating strategy to address the critical SOEC degradation mechanisms of metal corrosion and Cr evolution.

Key Impact

<table>
<thead>
<tr>
<th>Metric</th>
<th>State of the Art</th>
<th>Expected Advance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degradation Rate</td>
<td>> 10 mV/kh</td>
<td>< 4 mV/kh</td>
</tr>
<tr>
<td>Technology Adoption cost</td>
<td>> $10/kW</td>
<td>< $3/kW</td>
</tr>
<tr>
<td>Current Density @ 1.4 V/cell</td>
<td>> 0.5 A/cm²</td>
<td>> 1.0 A/cm²</td>
</tr>
</tbody>
</table>

Barrier to overcome
Deconvolution of degradation mechanisms- Careful EIS analysis of Cell Performance
Demonstration of coating technology at production relevant scale-use Nexceris’ existing stack platform

Approaches
1. Develop high performance o-SOEC cells
2. Develop robust SOEC coating approaches
3. Combine new cell generations with advanced coating approaches
4. Reduce degradation rates
5. Provide advancements at reasonable adoption cost

Accomplishments in BP1
1. Demonstrated high performing cells with -2.0 A/cm² @1.4 V
2. Explored advanced IC coatings under aggressive SOEC conditions and current density and demonstrated < 50 mΩ·cm² change for 500 hours
3. Identified up to 5X accelerated IC degradation conditions
4. Demonstrated stable cell operation with ChromLok™ interconnect coating
5. Updated manufacturing cost model with further reduction in cost

HydroGEN: Advanced Water Splitting Materials
P188, Advanced Coatings to Enhance Durability of SOEC Stacks. Hydrogen Fuel R&D Poster@6:30-8:00 Tuesday (4/30)

Accomplishments in BP1
Goal: Intermediate-Temperature p-SOECs for simultaneous H$_2$O splitting and H$_2$ separation with high current densities > 1.0 A/cm2 at 1.4 V/cell and durability of <30 mV/1000h while operating at ~600°C (BP2).

Approach:
Electrode and full cell @ WVU
- Modeling driving
 - H$_2$O-splitting reaction kinetics
 - Anode structural and composition
- Candidate anodes development
- Conformal catalyst layer coating
- Cell fabrication and performance measurements

Electrocatalyst @ CSM, NREL, & SNL
- Appropriate electrocatalyst compositions
 - High-throughput screening
- Catalysis & local surface activity
 - Operando ambient-pressure XPS

H-electrolyte & 3D Electrode@ INL:
- 3D Textile Electrode
- Conductivity and faradic efficiency improvements

Accomplishment of BP2
- Established and experimentally verified H$_2$O-splitting reaction kinetics modeling
- E-XPS characterization of O1s and Pr 3d of Pr$_2$NiO$_4$ electrode
- Development of highly performing triple conducting anode, ~1A/cm2 at 1.37V 600°C and durability of <30 mV/1000h
- Ultra-porous electrode skeleton
- Defect chemistry model developed to predict the leakage behaviors of electrolyte under practical conditions
- 3D hierarchical structure anode shows continuous running at current density 1.0 A/cm2 at <1.4 V at 600°C for 200 h

Morphology, pore size and EDX of the 3D electrode calcined at 700, 800, and 900°C.

3D PBNO

p-SOEC cells Running @ 1A/cm2 600°C
Project Goal

Develop oxygen electrode materials with high performance in oxygen-ion SOEC which solve the issue of electrode delamination in order to produce hydrogen below the DOE target of $1.87/kg and to test this electrode in a stack platform that has shown degradation rates <0.2%/1000 hours in SOFC mode.

Approach

Novel chemistries of nickelate-based materials with enhanced oxygen hyperstoichiometry will be developed. These materials will be co-sintered in button cells and stacks and tested.

Barriers to be overcome

1) Phase stability/performance: Identification of stable stoichiometry with target electrochemical properties
2) Co-sintering with balance of cell: Incorporate materials with stacks ensuring porosity & activity
3) Accelerated testing: Protocol development to probe dominant degradation mechanism

Major Technical Milestones

1. Button cell current density >1.5A/cm² @ 1.3V, <0.75%/1000 hr post break-in, no electrode delamination observed
2. Short stack current density >1.2 A/cm², <1%/ 1000 hr

Budget Period 1 Accomplishments

- Stabilization
- Co-Sintering
- SOEC Performance
- Durability

Budget Period 2 Plan

Utilize the procedures developed and positive results from BP1 to further study:

- Cross family stability fields
- Performance as a function of cation dopants to both barrier layer and the nickelate oxygen electrode
- Extend durability testing to 1000 hours
- Investigate interfacial reaction products
- Down select barrier layer/oxygen electrode pairs for scaling to stack testing
Accomplishments and Progress: Characterization of Solid Oxide Electrode Microstructure Evolution (HTE Supernode)

Objective: Elucidating HTE failure mechanisms in o-SOEC button cells.

Goals:
• Identify electrode microstructure evolution as a function of local solid-oxide composition and operating conditions
• Correlate with device failure modes
• Rationalize degradation mechanisms
• Develop predictive capability for modeling long term performance
• To develop mitigation approaches for mitigating degradation

Significance & Impact:
• Comprehensive platform of HTE science and technology available for rapid utilization by HTE developers
• Speed the development of technologies for achieving H₂ production goals

Accomplishments:
• All milestones have been successfully completed

INL synthesized and aged button cells

SNL SEM-EDX analysis on SOEC cells after testing

Interlab Button Cell Lifetime Analysis

TEM image of sectioned sample for TXM (SNL)

HydroGEN: Advanced Water Splitting Materials
Accomplishments and Progress: HydroGEN 2.0 HTE: proton-conducting solid oxide electrolysis cells (p-SOEC)

Goal: To develop a robust, conductive and reliable electrolyte material system for p-SOEC with high Faradaic efficiency and long durability, by effective combination of advanced computational and experimental effort.

Planned future work:
- **INL:** Study surface environments of electrolyte materials using *in situ* techniques; Perform DFT/AIMD calculations to investigate the influences of oxygen vacancies and surface intermediates.
- **NWU:** Calculate charge carrier concentrations under different overpotentials.
- **LLNL:** Perform large-scale simulation on the influence of working conditions.

Progress
- Demonstrated water adsorption behaviors under operating conditions by *in situ* characterization techniques.
- Evaluated surface properties of DFT/AIMD models and optimized the lattice parameters.
- Studied charge carrier concentrations and their dependence on working temperatures at hydrogen and stream sides by phase-field modeling.
- Investigated the local oxygen partial pressures at the interface of electrolyte/electrode under operation conditions.

Charge carriers on two sides of electrolyte

Surface energies of models with different layers and terminations

In situ FTIR spectra of water adsorption vs. temperature on electrolyte material
Publications

Presentations

Accomplishments and Progress: HydroGEN 2.0 HTE: Metal-supported solid oxide electrolysis cells (MS-SOEC)

Button Cell Progress

![Diagram showing button cell progress]

Improvements:
- Oxygen electrocatalyst composition
- ALD coating on metal support to suppress Cr migration

Future Work:
- Constant-V vs. Constant-I behavior
- Improve oxygen catalyst
- Thicker, more scalable coating
- Leverage cell structure improvements from MS-SOFC
Future Work

Future Work:
- Constant-V vs. Constant-I behavior
- Improve oxygen catalyst
- Thicker, more scalable coating
- Leverage cell structure improvements from MS-SOFC

“Any proposed future work is subject to change based on funding levels”
HTE Collaboration & Coordination

Project-driven tech transfer, resulting in
- Efficiency
- Yield
- Cost
- Durability
- Manufacturability

HTE Node Labs
- INL (Idaho National Laboratory)
- NREL (National Renewable Energy Laboratory)
- Sandia National Laboratories
- Berkeley Lab
- Lawrence Livermore National Laboratory

Support through:
- Personnel
- Equipment
- Expertise
- Capability
- Materials
- Data

Interactive HTE Projects
- Supernode
- HydroGEN: Advanced Water Splitting Materials
- p-SOEC
- o-SOEC
- Raytheon Technologies
- University of Connecticut
- West Virginia University
- REDOX
- SAINT-GOBAIN
- UNIVERSITY OF SOUTH CAROLINA
- NEXCERIS
HTE Remaining Challenges and Barriers

• Mitigating electronic leakage while maintaining cell performance, and materials durability in the p-SOEC devices and materials
• Accurate modeling across multiple scales with improved accuracy to rationalize, predict and control

HydroGEN 2.0 - HTE Proposed Future Work

• Definitive understanding surface environments of electrolyte materials using in situ techniques
• Maturation of DFT/AIMD calculations describing the effects of oxygen vacancies and surface intermediates
• Complete charge carrier concentrations as a f(overpotential) (NWU)
• Develop large-scale simulation that accurately describes effects of salient operating parameters (LLNL)

Any proposed future work is subject to change based on funding levels
HTE Summary

• p-SOECs
 – lower operating temperatures, promising improved materials and device durability and lifetimes
 – equal or improved conversion performance
 – water adsorption phenomena defined during operation using in situ characterization
 – DFT/AIMD approaches optimized, evaluated for surface modeling
 – Significant improvement in understanding effects of temperature on charge carrier concentrations at both the steam and hydrogen electrode interfaces, using phase-field modeling
 – Significant improvement in the understanding of oxygen partial pressures of electrolyte/electrode interface at typical operation conditions.

• MS-SOECs
 – Significantly improved oxygen catalyst composition, improved metal coatings to mitigate Cr migration

• o-SOECs
 – Detailed understanding of degradation mechanisms, development of in operando characterization tools, and multiscale modeling, setting stage for transition to H2NEW
Technology Transfer Activities

- Tech transfer in the HydroGEN HTE project occurs organically via partner programs with commercial collaborators
 - Raytheon Technologies: development of new p-SOEC technology
 - Redox: sputtering and pulsed laser desorption fabrication applications, PBSCF electrodes
 - Saint Gobain: exceptional resistance to degradation at high current densities in new o-SOECs
 - Nexceris: high performing cells operating at high current densities, advanced interconnect coatings functioning under aggressive SOEC conditions

- Patent Applications
Acknowledgements

Authors
Dong Ding
Gary Groenewold
Hanping Ding
Michael Tucker
Meng Li
Richard Boardman

Node Experts
Dong Ding
Michael Tucker
Zhiwen Ma
James O’Brien
Andriy Zakutayev
Brandon Wood
David Ginley
Josh Sugar
Eric Coker

HTE Project Leads
Scott Barnett, NU
Tianli Zhu, UTRC
Prabhakar Singh, UConn
John Pietras, Saint Gobain
Xingbo Liu, WVU
Bryan Blackburn, Redox
Kevin Huang, USC
Emir Dodidbegovic, Nexceris
Olga Marina, PNNL

Research Teams

United Technologies Research Center
Saint-Gobain
Northwestern University
Nexceris
West Virginia University
Redox Power Systems, LLC

Energy Materials Network
U.S. Department of Energy
Acknowledgements

HTE Supernode Team - 18 experts

Scott Barnett
Peter Voorhees

Huyen Dinh
David Ginley
Zhiwen Ma
Robert Bell
Philip Parilla

Northwestern University

Richard Boardman
Dong Ding
James O’Brien
Hanping Ding
Gary Groenewold

Idaho National Laboratory

Mike Tucker
Fengyu (Kris) Shen
Dula Parkinson
Nobumichi Tamura
Matin Kunz

NREL (National Renewable Energy Laboratory)

Brandon Wood
Joel Berry
Penghao Xiao

Lawrence Livermore National Laboratory

Energy Materials Network
U.S. Department of Energy
Overview – HTE Technology, o-SOEC, p-SOEC

Oxygen Ion Transport Solid-Oxide Electrolysis

(O\(^{2-}\) -SOEC; Unresolved R&D Material Barriers Remain)

<table>
<thead>
<tr>
<th>Porous Cathode</th>
<th>Porous Anode</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O + H(_2)</td>
<td>H(_2)O + O(_2)</td>
</tr>
</tbody>
</table>

\[
\text{H}_2\text{O} + 4\text{e}^- \rightarrow 2\text{H}_2 + 2\text{O}^{2-}
\]

Proton-Conducting Solid-Oxide Electrolysis

(H\(^+-\) -SOEC; Early-Stage Research Needed)

<table>
<thead>
<tr>
<th>Porous Cathode</th>
<th>Porous Anode</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O + H(_2)</td>
<td>H(_2)O</td>
</tr>
</tbody>
</table>

\[
2\text{H}_2\text{O} \rightarrow 2\text{H}_2 + 4\text{O}^{2-}
\]

Overview – HTE Technology, o-SOEC, p-SOEC

O\(^{2-}\)-SOEC

- **Operating Temperature**: 650-850°C
- **Electrolyte Conductivity**: 0.015 S.cm\(^{-1}\) at 850°C
- **Cathode Products**: H\(_2\O + H\(_2\)
- **Anode Products**: H\(_2\O + O\(_2\)
- **Challenges**: durability decreases: microstructure evolution, D stresses, Cr migration

H\(^+-\)-SOEC

- **Operating Temperature**: 550-750°C
- **Electrolyte Conductivity**: 0.01 S.cm\(^{-1}\) at 650°C
- **Cathode Products**: Pure H\(_2\)
- **Anode Products**: O\(_2\) + sweep gas
- **Challenges**: slower kinetics, maturation of electrolyte (synthesis, densification, H\(^+\) conduction)

HTE Supernode & H2NEW is focused on attacking o-SOEC issues: elemental migration, unexpected phase formation, crack and void formation, and delamination
Overview: Advantages/Challenges of HTE

Advantages:
- 30-50% higher thermodynamic efficiency possible for steam v. water splitting (free energy + electricity use)
- Reversible operation possible with optimal design of cells, stacks and modules
- Does not require precious metals

Challenges:
- Cell degradation, viz., sintering, pore consolidation, Cr migration / poisoning, catalyst deactivation (Ni hydridation), delamination