

Performance and Durability Investigation of Thin, Low Crossover Proton Exchange Membranes for Water Electrolyzers

Andrew M. Park The Chemours Company DOE Project Award #DE-EE0008836 June 8, 2021

Project ID #P186

DOE Hydrogen Program 2021 Annual Merit Review and Peer Evaluation Meeting

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Project Partners Andrew Park (PI), Chemours Siddharth Komini Babu, Los Alamos Nat'l Lab

Project Vision

Thin, reinforced membrane with performance and durability additives that enables high current density and long lifetime in PEMWE systems.

Project Impact

High performance commercial membranes will directly and indirectly reduce PEMWE costs, facilitating H_2 @ < \$2/kg

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE) HydroGEN: Advanced Water Splitting Materials

Project Motivation

This project aims to transform PEMWE systems via high performance membranes. It unites the manufacturer of Nafion[™] PFSA membranes (Chemours) and the leader in performance and durability investigations of polymer electrolyte materials (Los Alamos National Lab (LANL)).

Barriers

<u>Manufacturability:</u> These membranes will be constructed on roll-to-roll systems for easy transition to the commercial scale <u>Durability:</u> The additives envisioned to enable thin membranes can move, agglomerate, or leave the system entirely, which will be studied and mitigated

Key Impact

Metric	State of the Art	Expected Advance
Membrane resistance [Ω-cm ²]	0.2	<0.07
Membrane tensile strength (MPa)	25	>40
Gas Recombination Catalyst and Radical Scavenger in membrane	No	Yes

Partnerships

<u>Chemours</u> is the manufacturer of Nafion[™] PFSA polymers and is the leading supplier of water electrolyzer membranes today <u>Los Alamos National Lab</u> has studied the fundamental mechanisms of PFSA membrane durability for >10 years and has significant relevant experience/equipment.

Approach – Innovation: **Combining Several Benefits Into One Membrane**

- Pursuit of cheap electricity (feedstock) will require usage of intermittent energy
- **Current density will follow** varying electrical load
- Low current density results in high H_2 in O_2 content (safety concern – LEL = 4%)

GRCs enable safe stack operation for load-following applications, especially at high ΔP with a thin membrane

for several benefits:

- 1. Handleability (especially at scale)
- 2. Mechanical **Properties**
- 3. Low x-y expansion
- **Enables low EW** 4. ionomers

Fluoride ions have been quantified in **PEMWE cell** effluent **Fluoride loss** exacerbated at high temps

Radical scavengers will be investigated to understand impact on PEMWE degradation

Approach and Collaborations: Project Team

Project Partner	Role	Key Personnel	Activities
Chemours [®]	Project Lead	Andrew Park (PI), Ryan Gebhardt, Dave Manion, Ben Wright, Sam Bartuska, Tim Hopkins	Membrane manufacturing (lab and pilot scale), raw materials sourcing, durability testing, project management and reporting
EXAMPLES ALCENS NATIONAL LABORATORY	Project Member	Siddharth Komini Babu (sub PI), Rod Borup, C. Evan van Pelt, Chung Hyuk Lee	Ex-situ measurements of hydrogen permeation and additive mobility, durability testing, GRC and scavenger synthesis
	HydroGEN Collaborator	Guido Bender (node PI), Jacob Wrubel, Jason Zack, Ellis Klein	In-situ PEMWE MEA and gas crossover testing, failure analysis, fluoride release quantification
	HydroGEN Collaborator	Adam Weber, Ahmet Kusoglu, and Nem Danilovic (node PIs), Arthur Dizon	Cell modeling, membrane behavior with additives

• Team is well integrated, and has met biweekly to discuss results and future work

- PEMWE devices are the most proven technology to drive the adoption of H2@Scale. Reducing areal resistance of membranes in PEMWE environments is a critical contributor to their envisioned cost reduction toward \$2/kg H₂.
- Understanding durability implications of gas recombination catalysts and radical scavengers will enable "moving on" from incumbent thick membranes in PEMWE.
- EMN nodes bring capabilities that Chemours does not currently have in-house, facilitating advancement in materials availability.
- The expected project outcome significant progress toward a commercial PEMWE-specific membrane ensures a USA-based supplier of these critical raw materials.

Accomplishments: Milestones Achieved

Milestone Type and Number	Milestone Description	Verification Process	Anticipated Date (Months from Start)	Approximate Percent Complete
Milestone (M1)	Define initial electrolysis membrane MEA material sets and ASTs which are capable of providing performance of at least 2 A/cm ² at 1.9 V	Chemours/LANL	3	100%
Milestone (M2)	Establish test for gas crossover (H_2 in O_2 content) for electrolyzer MEAs, and acquire baseline crossover/performance for N115, N117, NR212-containing MEAs	6	100%	
Milestone (M3)	Manufacture membranes with at least 3 different additives for gas recombination and radical scavenging and evaluate their activity for H_2 and O_2 recombination/radical scavenging by monitoring H_2 in O_2 content and FER, respectively, at beginning of life (BoL) targeting 2% H_2 in O_2 for all current densities between 0.5 and 2 A/cm ² and an FER <0.25 µg/cm ² -hr, a factor of 40x lower than NR211 in the DOE fuel cell combined chemical/mechanical AST.	LANL	9	100%
Go/No-go (G1)	A \leq 50 µm thick PFSA-based membrane with gas recombination catalyst layer (GRC PGM maximum loading of 0.1 mg/cm ²) demonstrates at least 50% reduction in H ₂ in O ₂ (outlet) content (maximum of 2% H ₂ in O ₂ for all current densities between 0.5 and 2 A/cm ²) compared to membrane with equivalent thickness without GRC layer. Membrane resistance must be <0.07 Ω -cm ² and current density must reach 2 A/cm ² at <1.9V, with all targets to be met in a PEMWE MEA at 60°C and with a differential pressure of 1-10 bar.		12	75%

- Significant COVID-related delays to developing/validating experimental cells/protocols have been mitigated by recent progress
- GNG 1 expected to be reached with short no-cost extension

Improved Processing

- Early GRC processes (A & B) resulted in large GRC agglomerates scattered within membrane area
 - Likely ineffective recombination via low surface area to volume ratio of GRC
- Improved processing (C) yields membrane where GRC is uniformly dispersed in PFSA matrix
 - Though composition is not yet fixed, GRC inclusion process should be able to be leveraged across different compositions/chemistries

25µm

• Radical scavenger easily included in membrane (not shown)

Optimized processes facilitate GRC and radical scavenger inclusion in PEM

HydroGEN: Advanced Water Splitting Materials

250um

(false blue color to emphasize weak signal)

Accomplishments: Reinforced Membrane Prototype and MEA Testing

Membrane	Dry Thickne	ess Reinforce	d? GRC or Radical	Areal Resistance in 23°C H ₂ O [mΩ-cm ²]	°C Ultimate Ter [M	Ultimate Tensile Strength [MPa]		Liquid H ₂ O Expansion [%]	
	(μπ)		Scavenger:		MD	TD	MD	TD	
N 117	178	No	No	217	25	25	13	22	
N 115	127	No	No	156	31	28	11	19	
NR 212	50	No	No	78	32	32	20	20	
NDP 4006	50	Yes	No	81	43	42	13	8	
MEA Component Anode: IrOx at 0.3 0.4 mg/cm ² Cathode: Pt/HSC at 0.1 mg/cm ² Temperature: 60°C Pressure: 0-20 bar Ambient O ₂ Water flow: 300	2- 2- (1.9) 1.9 1.8 1.7 1.6 H_{2} , 1.5 1.4	 N117 N115 N212 NDP4006 	ΔP = 0 bar, 60°C 1 1.5 2	2.1 2 N117 2 N115 1.9 1.9 NDP4006 1.8 1.7 1.6 1.5 1.4 ΔP 0 0.5 1	= 10 bar, 60°C 1.5 2	2.1 2 N117 2 N115 N212 NDP4006 1.8 1.7 1.6 1.5 0 0 0.5	ΔP = 20 k 1	Dar, 60°C 1.5 2	
mL/min		Current D	ensity (A/cm²)	Current Densit	ty (A/cm²)	Curren	t Density (A/cn	n²)	
Reinfo HydroGEN: Advanced W	ater Splitting Ma	orototype aterials stre	embrane ength and re	matches NR2 educed planar	12 perform expansion	nance, wi	th higi	her 9	

Accomplishments: Testing Anode Exhaust Stream from Operating MEA

- Liquid water dropouts & condensers to prevent H₂O from contaminating the GC
- System designed with inert dilution gas to keep $H_2:O_2 < 1\%$ LFL _

HydroGEN: Advanced Water Splitting Materials

_

- Nafion 212, 60°C As measured (H₂ in total gas) Extracted H₂ in O₂ Data 5.0 30.0 • 20 bar Hazardous % 25.0 ou 20.0 LFL (4%) • 10 bar 4.0 -_{20.0} 0 • 0 bar Unsafe to 20 bar H₂ and O₂ content 3.0 H₂ in O₂ and inert • 10 bar measure without Safety Buffer extracted from *qas diluent* • 0 bar 2.0 diluent Extracted F inert gas in GC NREL Safety Limit (1%) 1.0 0.0 0 0.5 1.5 Current Density (A/cm²)
- H₂ in O₂ content is extracted from the GC analysis of the diluted stream

Ensuring Safe Crossover Testing With Inert Gas Dilution

NREL safety limit is 1% -

Accomplishments:

- Hydrogen crossover can create a flammability hazard at our operating conditions after the water is removed ____
- A monitored dilution stream of inert gas was added for safe operation ____
- ____

- Tested baseline cells for H₂ crossover at 3 different H₂ pressures (0 bar, 10 bar, 20 bar) and 2 different temperatures (60°C, 80°C)
- H₂ percent in O₂ decreases with current density because the OER produces O₂ more than H₂ crosses over
- Crossover flux vs. current density can provide insights about the crossover mechanism(s):
 - Increasing the current increases the concentration gradient, driving diffusion
 - Increasing backpressure increases the pressure-driven flux (suggested to be negligible for Nafion[™])
 - Electroosmotic drag could mitigate crossover (water moves from anode to cathode), which may be an interesting effect to explore/quantify in the coming quarters (subject to funding)

Accomplishments: H₂ Permeation Reduction with GRC

13

 ~50 μm membrane with GRC shows ~3x reduction in effective H₂ crossover

 HydroGEN: Advanced Water Splitting Materials

 between 1-6 atm p_{H2}

Accomplishments: XRF Mapping of GRC Migration in Ex-situ Cell

GRC Count

10

5

50

30

GRC Count

- End of test XRF (top row) of first GRC-containing membrane prototype shows tendency of GRC to 20 migrate to perimeter of "active" (hydrated) area 15
 - Effect does not occur in H_2/N_2 environment,
 - suggesting active recombination promotes movement of GRC
 - Refined prototype (bottom row) shows uniform GRC distribution at beginning of H_2/O_2 cell test.
- At end of test, some GRC movement to edges of 40 hydrated area is obvious. Average GRC content in membrane appears lower, but still substantial.

20 XRF capability to map in-situ movement of GRC will be critical to ensure durability of membrane

Accomplishments: Mitigation of Radical Scavenger Migration

- As with GRCs, radical scavengers are a risk to move within/out of the membrane during PEMWE operation
- Utilizing cerium migration approach in PEMWE-relevant environment reveals tendency of scavenger to migrate

Scavenger morphology/composition has a significant impact on their mobilityHydroGEN: Advanced Water Splitting Materialsin a PEMWE environment15

Accomplishments: Mathematical Model for PEMWE

2D finite-element method (FEM) model

- Physics / Governing Equations / Domain
 - Porous gas and liquid flow / Darcy's Law ■
 - Gas transport / Stefan-Maxwell equations
 - Electrochemistry / Butler-Volmer kinetics
 - Membrane transport / Conc. solution theory

Development of Crossover Mechanisms

- Two mechanisms for gas evolution
 - Gas-Phase product (green)
 - Product gas generated directly into gas phase
 - Assumes quick bubble formation kinetics
 - Solubilized Gas product (blue)
 - Product gas generated directly into liquid phase
 - Allows for high-concentrations in liquid phase

Accomplishments: Using Model to Understand Baseline Performance

Polarization Curve Model Fit

 FEM model output compares well to experimental measurements from NREL on N117 membrane

Hydrogen Crossover Model Fit

 Crossover model is also able to fit data generated by NREL on N117 membrane as a function of temperature and pressure

FEM model appears to accurately predict experimental results, and will beHydroGEN: Advanced Water Splitting Materialsused to aid in membrane design in BP 2 (subject to funding).

- Chemours has provided prototype membranes samples to LANL and NREL, and to LBNL in the near future.
- LANL has built new capabilities and extended existing ones into the PEMWE space to feed back ex-situ data on membranes with GRC and radical scavengers to Chemours. Permeability and other data are sent to LBNL for modeling. New additive compositions are in development for integration with Chemours in BP2 (subject to funding).
- NREL has built an in-situ gas crossover testing platform (0-30 bar) and has tested MEAs made with Chemours' membranes. Feedback goes to Chemours for membrane design and LBNL for modeling.
- LBNL models have established a platform to assist with design of prototype membranes.
- Many developed protocols can be merged into the benchmarking/protocols 2b scope
- Work on thin membranes will provide significant fundamentals to HydroGEN members as well as H2NEW efforts to explore scale-up considerations based on state of the art materials.

Proposed Future Work

Task or Subtask	Milestone Type and Number	Milestone Description	Responsible	Anticipated Date (Months from Start)	Approximate Percent Complete
1.1	Milestone (M5)	Begin AST testing of roll to roll fabricated reinforced membranes	Chemours/LANL	15	0%
3.1	Milestone (M6)	Manufacture and evaluate series (minimum 5 different samples) of membranes with different thicknesses and GRC layer compositions	Chemours	18	0%
2.1	Down-Select #1	Finalize selection of ePTFE reinforcement and additive composition	Chemours	18	0%
2.2	Milestone	Achieve H_2 in O_2 content of <2% for all current densities between 0.5 and 2 A/cm ² for a membrane with a GRC layer	Chemours/LANL	21	0%
	Go/No-Go (G2)	 i. Reinforced roll-to-roll dispersion cast membrane with GRC and radical scavenging additives demonstrates a H₂ in O₂ content of < 2% for all current densities between 0.5 and 2 A/cm². ii. Voltage in an MEA at 2 A/cm2 must be < 1.9 V and membrane resistance/gas crossover must not increase more than 2% of BoL value after 500 hr of continuous operation at 60°C and differential pressure of 30 bar. 		24	0%

- Budget Period 2 work will focus on integrating membrane, gas recombination catalyst, and radical scavenger into "complete" membrane prototypes
- Membranes will begin to be tested for durability as well as initial performance, culminating in GNG 2.

Any proposed future work is subject to change based on funding levels

- Budget period 1 work has focused on individual aspects of the envisioned final membrane
- A thin, reinforced membrane prototype has demonstrated equal or better performance than NR 212 with higher strength and lower expansion
- GRCs appear to be effective in reducing hydrogen in oxygen content by ~3x compared to baseline PFSA membranes. This effect will be verified in an MEA for GNG 1.
- Radical scavengers have been made to be immobile in the PEMWE environment.
- Budget period 2 will merge all workstreams to create "all-in-one" complete prototype membranes and evaluate them in ASTs.

Technical Backup Slides

Subtask 1.1 (Milestone M1): Define Baseline MEA Materials Sets

Component	Condition	Material/Amount
Membranes		N117 N115 NR212 NDP 4006
Electrode Catalyst	Anode	Iridium Oxide
Electrode Catalyst	Cathode	Platinum on High Surface Area Carbon
Electrode Londing	Anode	0.4 mg/cm ² (same as H2NEW)
	Cathode	0.1 mg/cm ²
Gas Diffusion Layer	Cathode	0% PTFE Carbon Paper (Toray)
Porous Transport Laver	Anode	Pt-Sputtered Titanium Felt (Bekaert) 2GDI 5-0.125 or 2GDI 6-0.25
Gaskets	Ambient Pressure	Polytetrafluoroethylene (PTFE)
	Differential Pressure	Proprietary

Accomplishments: Comparing Product Gas Mechanisms to Literature

- Simulation Results
 - (top-left) Simulation results showing the difference between the crossover of the two mechanisms
 - Solubilized gas (solid line)
 - Gas phase (dashed line)
 - (top-right, bottom row)
 Comparison of simulated and published crossovers
 - The solubilized gas mechanism can explain high-current density crossover better