

NIKOLA

DURABLE MEAS FOR HD FC TRUCKS JOHN SLACK JUNE 8, 2022

DOE Hydrogen Program 2022 Annual Merit Review and Peer Evaluation Meeting Award DE-EE0008820

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

ACKNOWLEDGEMENTS

Nikola

Andrew Baker Cheng He Na'il Mitchell Sayeeda Shifa Vivek Murthi

Carnegie Mellon University

Shawn Litster Zakar White Kara Ferner

Northeastern University

Sanjeev Mukerjee Serge Pann Ershuai Liu

Georgia Institute of Technology

Younan Xia

M2FCT

Dave Cullen (ORNL) Nancy Kariuki (ANL) Debbie Myers (ANL) Tim Van Cleve (NREL) KC Neyerlin (NREL)

HFTO

Greg Kleen Eric Parker Dimitrios Papageorgopoulos

А В Е

PROJECT GOALS

- 1. Fabricate, characterize, and evaluate membrane electrode assemblies (MEAs) with novel catalyst layer structures to improve performance and durability.
- 2. Minimize Pt/Sulfonate interaction to unlock catalyst activity for identified <u>durable</u> catalysts (*e.g.* dissolution resistant shape-controlled alloys or another down-selected catalyst)
- **3.** Achieve high catalyst-layer oxygen diffusivity by engineering large homogeneous pores in the CL and reduce Knudsen O₂ transport resistance by decreasing ionomer clustering on Pt surfaces

This will be accomplished using:

A "Nanocapsule" electrode structure: A repeating core/shell electrosprayed nanoparticle in the hundreds-of-nanometer diameter range which separates ionomer and Pt to maximize activity while allowing ionic transport

The outcomes of this project, if successful, will allow for better utilization of highly active and/or highly durable catalysts and the bridging of the activity gap between RDE and MEA.

ы С Ч

OVERVIEW

Timeline & Budget

- Project Start: 10/1/2021
- ✤ Project End: 10/1/2024
- Total project budget: \$2,125,000
 - Total Recipient Share: \$425,000
 - Total Federal Share: \$1,700,000
 - DOE funds spent*: \$ \$392,317
 - Cost Share Funds Spent*:\$101,599
 - Total funds Spent*: \$493,916
 - * As of 4/25/2022

Partners

- Nikola Corporation, Project Lead
- Carnegie Mellon University
- Northeastern University
- Georgia Institute of Technology

P A G E

COLLABORATION & COORDINATION

Targets and Status: Budget Period 1 **RELEVANCE**

Ŷ

Task Num	ıber	Task or Subtask	Milestone Type/number: Milestone Description	Anticipated Month (from Start of the Project)
Task 1.1.1	\checkmark	MEA component down-selection	 M 1.1.1: down-select commercial catalyst M1.1.2: down-select membrane 	M6, M9
Task 1.1.2	\checkmark	Nikola CL optimization and fabrication	 M 1.1.3: Nikola CL optimization with commercial catalyst M 1.1.4 : MEA Benchmarking Baseline Definition 	M12
Task 1.2	~	Development of cuboctahedral PtCo/C catalyst for Nikola CL	 M 1.2.1: Metal deposition optimization for cuboctahedral PtCo/C M 1.2.3: fabrication and delivery of 6g of catalyst 	M6, M9
Task 1.3	X	Development of IBAD Pt/M-M/C catalyst for Nikola CL	 M 1.3.1: Metal deposition optimization for IBAD Pt/M-M/C Milestone 1.3.3: Perform IBAD catalyst degradation analysis and delivery of 6g of catalyst 	M8, M12
Task 1.4	\checkmark	Modeling and analysis of Nikola CL	 M 1.4.1 Modeling of MEA CL M1.4.2: structural analysis of Nikola CL and MEA 	M6, M12
Task 1	X	Nikola CL MEA fabrication and performance (≤50cm ² MEA active area)	 <u>Go/No-Go 1</u>: Nikola CL MEAs will be fabricated with commercial catalyst MEA -Performance ≥ 350 mA/cm² at 0.8V, 200 kPa_{ab}, 80 °C, 0.3 mg/cm² PGM total 	M12

NIKOLĂ

The Nanocapsule Catalyst Layer APPROACH

Purposefully heterogeneous Ionomer & Catalyst within the catalyst layer

- Optimized local I/C: may reduce sulfonate poisoning while still providing conductivity
- Leverages non-zero conductivity: of protons across carbon and platinum surfaces^[1,2]
- Tune I/C in the shell: minimum required for protonic transport from membrane to CL/MPL edge
- Tune I/C in the core: minimum required for protonic transport from shell to core to reduce confinement effects

ш Ю

[1] A. Kongkanand, U.S. DOE Annual Merit Review FC144, 2018
[2] A. Kongkanand, U.S. DOE Annual Merit Review FC144, 2019
[3] K. Takahashi et al. Journal of The Electrochemical Society, 163, F1182-F1188, 2016

NIKOLA

Nanocapsule catalyst layer optimization ACCOMPLISHMENTS & PROGRESS (TASK 1.1)

Co-axial needle emitter attempts & results

Summary: Sensitive to changes in ink & slower fabrication

Single needle emitter results

Summary: More robust & up to 10x faster fabrication

Physical and Electrochemical Analysis ACCOMPLISHMENTS & PROGRESS (TASK 1.1)

lap Data 4

ш

Summary

SEM & STEM/EDS Analysis Summary

- Average particle Circularity: $92\% \pm 2\% (4\pi \text{Area/perimeter}^2)$
- Average Nanocapsule diameter: 5 μm ± 3 μm
- Nanocapsule ionomer-shell thickness: 200-500nm
- Typical radial ionomer profile: Step-function

Electrochemical Analysis Summary

- On the path to surpassing BP1 Go/No-Go: (Present: 335 mA/cm². Target: 350 mA/cm²)
- Transport losses with current structure
- Not yet achieved activity enhancement

Multi-scale modeling **ACCOMPLISHMENTS & PROGRESS (TASK 1.4)**

ш

Multi-scale modeling ACCOMPLISHMENTS & PROGRESS (TASK 1.4)

Initial application of model framework applied to key design parameters:

- Diameter of the nanocapsule
- Conductivity in the core

Core conductivity ranging from 1/10th of conventional catalyst layers to typical conductivity (1 S/m):

• A 1 μm diameter nanocapsule requires an internal core conductivity of approximately 0.5 S/m for maximum performance

Comparison of a 0.5 and 1 μ m diameter nanocapsules:

• Significant improvement in mass transport limited performance when reducing to 0.5 μm due to reduced internal diffusion length scales

Multi-scale modeling ACCOMPLISHMENTS & PROGRESS (TASK 1.4)

Cesium-stained ionomer for X-ray contrast and 3D ionomer mapping

Phase contrast scan shows higher contrast of ionomer layer around catalyst-filled spherical particle agglomerates (e.g., nanocapsules)

Ionomer films have a thickness of ~500 nm that partially disappears where multiple particles aggregate together Yellow = Nafion-rich Red = catalyst-rich

Cesium-ion stained ionomer and absorption contrast

Size distribution analysis of nanocapsules shows a range of 4-8 μm

65 µm

lonomer film

Experimental Catalyst Development & Analysis ACCOMPLISHMENTS & PROGRESS (TASKS 1.2 & 1.3)

Georgia Tech

Northeastern University

Neither performance nor durability matches baseline.

NIKOLA

P A G E

REMAINING CHALLENGES & BARRIERS

Challenge	Resolution
Nanocapsule size too large	 Explore the following properties to solve:
lonomer droplets on surface of nanocapsule	 Solvent choice, I/C ratio, solids concentration, conductive additives, polymeric additives, viscosity modifiers, flow rate, emitter/collector distance, voltage, temperature of the environment RH carbon support type
Nanocapsule size polydispersity	environment, Kri, carbon support type
Scale up to full-size MEA	 Fabricate onto large platform using optimized strategy from sub- scale. Employ strategies to increase deposition rate (i.e., single-phase emitter: already under development)

YEAR 1 MILESTONES AND PROGRESS

Challenges overcome:

- Overcome instability issues with inks
- Achieved core/shell structure
- Produced highly spherical particles
- Step-function core & shell radial ionomer profile
- Increased production rate

Milestone	Period	Progress	
Nanocapsule CL fabrication/ physical analysis/ electrochemical analysis iteration process underway	Q2	Complete	\checkmark
Development of cuboctahedral PtCo/C catalyst for Nikola CL	Q4	Complete	\checkmark
Development of IBAD Pt/M-M/C catalyst for Nikola CL	Q4	Incomplete	X
Modeling and analysis of Nikola CL (Nano-CT, Multi-scale model) underway	Q4	Complete	 Image: A second s
Go/No-Go 1: MEA -Performance ≥ 300 mA/cm ² at 0.8V	Q4	On track	\mathbf{X}

1 5

P A G E

PROPOSED FUTURE WORK

Budget Period 2 Iterative Plan:

Nanocapsule Electrode Optimization

	Step	Locations
, 1.	Fabricate two each of several electrode types (e.g., changing fabrication parameters) per week. Collect SEMs of every electrode structure made.	NIKOLA
2. 3.	 Screen these MEAs (+2 baseline MEAs) for BOL performance in a short stack Polarization data, ECSA, mass activity Comprehensively Test the best MEA of the short stack per week in a single cell platform 	NIKOLA + CINREL
I 4.	 Confirm stack data + GTR, CL ionic resistance, sulfonate coverage, air/O₂ gain Physically Analyze the electrode structure of the week's best performing 	NATIONAL RENEWABLE ENERGY LABORATORY
	 MEA using STEM/EDS Send the single best performing electrode structure per month to CMU & ORNL for more comprehensive analyses including nano-CT 	University CAK RIDGE National Laboratory

16

 $\overline{}$

A G E

۲

TECHNICAL BACKUP & ADDITIONAL INFORMATION

r

TECHNOLOGY TRANSFER ACTIVITIES

Patents

Methods of Making catalyst layers of membrane electrode assembly comprising structured units. Patent No.: US 11,283,083 B2 2022. (This IP was submitted prior to DOE funding).

Tech-to-market activities

Commercialization of catalyst layer technology is anticipated if proposed advances are realized

Future/Additional Funding: n/a

ш Ю

Cell performance at 80 C 100RH

80C 150kPa 100RH H2/Air

Georgia Tech PtCo Truncated Octahedral Catalyst Synthesis

Georgia Tech has shipped 6g of Catalyst to Nikola

- 30wt% Pt loaded PtCo nanocrystals with a uniform size of **5 nm** were homogeneously dispersed on carbon support (Vulcan XC72-R)
- The nanocrystals feature a truncated octahedral shape

Standard Synthesis (from Georgia Tech):

Pt(acac)₂: 150 mg, 0.38 mmol Co(acac)₂: 150 mg, 0.58 mmol Benzoic acid: 1300 mg, 10.66 mmol Carbon: 100 mg, 8.33 mmol DMF: 150 mL, 1.94 mol 160 °C 12 h

0

0

ш

ບ ∢ Georgia

Tec

Georgia Tech PtCo Truncated Octahedral Catalyst Synthesis

ORR Activity in 0.05M H₂SO₄

Georgia Tech

21

- > 0.05 M H₂SO₄ solution
- Cyclic Voltammetry
- Scanning Rate: 50 mV s⁻¹
- Potential Range: 0.05-1.1 V
- Linear Sweep Voltammetry
- Rotating Speed: 1600 rpm
- Scanning Rate: 10 mV s⁻¹
- Potential Range: 0.1-1.1 V

Catalyst	ECSA (m ² g ⁻¹)	Specific Activity (mA cm ⁻²)	Mass Activity@0.9V (A mg ⁻¹)
Pt-Co/VX72R	56	0.25	0.14
Commercial Pt/C	64	0.08	0.05

