

NIKOLA

ADVANCED MEMBRANES FOR HD FC TRUCKS ANDREW BAKER JUNE 8, 2022

DOE Hydrogen Program 2022 Annual Merit Review and Peer Evaluation Meeting Award DE-EE0009243

ACKNOWLEDGEMENTS

Nikola

John Slack Vivek Murthi

Chemours

Andrew Park (sub-PI) Jessica Flatter Colin Peterson Allen Sievert Tim Hopkins

M2FCT

Nancy Kariuki (ANL) Debbie Myers (ANL) Tanya Agarwal (LANL) Siddharth Komini Babu (LANL) Rangachary Mukundan (LANL) Rod Borup (LANL) Tim Van Cleve (NREL) KC Neyerlin (NREL) Ahmet Kusoglu (LBNL)

HFTO

Greg Kleen Eric Parker Dimitrios Papageorgopoulos

P A G E

PROJECT GOAL

Improve the performance and durability of membrane electrode assemblies (MEAs) in heavy duty (HD) fuel cell systems by developing membranes with optimized architectures which incorporate thermally-stable ionomers and immobilized radical scavengers

Realizing these proposed advances can:

- Reduce radical scavenger transport
- Limit performance losses due to excess cations
- Reduce durability losses due to depleted radical scavengers
- Reduce HD fuel cell TCO

OVERVIEW

Timeline & Budget

- ✤ Project Start: 10/1/2021
- ✤ Project End: 10/1/2024
- Total project budget: \$1,281,134
 - Total Federal Share: \$998,376
 - ➢ Cost Share: \$282,758
 - Total DOE funds spent*: \$30,348
 - Cost Share Funds Spent*: \$8,605
 - > * As of 4/25/2022

Partners

- Nikola Corporation, Project Lead
- The Chemours Company, Ionomer Synthesis

ΡΑGΕ

COLLABORATION & COORDINATION

Monomer/polymer synthesis

Reinforced membrane preparation

NIKOL∧™

- Membrane evaluation
- MEA integration and evaluation
- Polymer & membrane characterization
- Membrane AST development

- Develop optimized membrane for HD applications
- Validate ion-immobilizing polymer concept
- Refine membrane AST for HD conditions

ш Ю

RADICAL SCAVENGER EFFECTIVENESS RELEVANCE

All references listed in Backup Slides

PAGE /

RADICAL SCAVENGER TRANSPORT MECHANISMS RELEVANCE

- Cerium Ion Proton
- In-plane convection due to water gradients^[1-2]
- Through-plane migration due to potential gradients^[3]
- Self-diffusion after gradients are removed^[4]
- Cations stays in the cell: **no "washout"**^[2]

ш Ю

> ∠ ⊿

> > Lai, et al., *J. Electrochem. Soc.*, **165**, F3217 (2018).
> > Baker, et al., *J. Electrochem. Soc.*, **163**, F1023 (2016).
> > Okada, et al., *Electrochim. Acta*, **43**, 3741 (1998).
> > Goswami, et al., *J. Phys. Chem. B*, **105**, 9196 (2001).

Illustrations courtesy of Dr. Ahmet Kusoglu (LBNL)

ADDITIONAL CHALLENGES AT HIGH TEMPERATURE

Relative fluoride emission rate (FER) Relative hydrogen crossover (XO) 100 2 Log relative FER (to 80°C case) 1.8 Relative XO (to 80°C case) 1.6 10 1.4 • • y = 0.0146x - 0.1394 $y = 1E-11x^{5.8135}$ 1.2 1 1 0.8 0.6 0.1 0.4 0.2 vs. temperature vs. temperature 0.01 0 20 40 60 80 100 120 70 90 150 50 110 130 T (°C) T (°C) 5 Increased temperature can lead to a cascade of vs. membrane thickness Relative XO (to 25 µm) effects which reduce lifetime efficiency 4 3 Conductivity and crossover should be optimized for an 2 HD-specific membrane design without relying on $y = 10.16x^{-0.716}$ reducing membrane thickness 10 100 1000 Log membrane thickness (µm)

NIKOLN

All references listed in Backup Slides

OPTIMIZING MEMBRANE CHEMISTRY & ARCHITECTURE

- HT-PFSA is more crystalline than LSC or MSC PFSAs at lower equivalent weights (EWs)^[1]
- Lower feasible EW bound for HT-PFSA

Evaluate and model effects of parameters on durability:

- Thickness
- Equivalent weight (EW)
- Additive content

Evaluate ionomer chemistry and compositional changes under representative HD test protocols and derive empirical relationships which maximize lifetime efficiency

⊐ 9 4

METAL-DOPED CERIA NANOPARTICLES

- Insolubility of metal-doped ceria (CeMOx) attributed to internal porosity (CPO) or agglomeration (CZO)
- Enhanced peroxide decomposition activity attributed to higher concentration of surface O₂ vacancies
- State of agglomeration not clear in membrane; solubility/activity not assessed in situ

ш Ю

∢

۲

- Use membrane containing periodic weak acid (i.e. strong cation-associating) end groups to ٠ mitigate radical scavenger migration and reduce contamination/depletion effects
 - Necessary to evaluate tradeoffs in membranes containing proposed immobilization schemes

APPROACH

RADICAL SCAVENGER DESIGN PHILOSOPHY

NIKOLN

1 2

P A G E

PROJECT TARGETS & STATUS APPROACH

~

#	Metric		SOA status	Status	Project target
1	Area specific resistance [Ω-cm ²]	95°C, 36% RH	0.065 ^[a]	0.045 ^[e]	0.1
		80°C, 100% RH	0.016 ^[a]	0.013 ^[e]	0.02
2	Gas crossover [mA/cm ²]	80°C, 100% RH	2 ^[a]	1.7 ^[e]	2
3	Radical scavenger mobility [m²/Vs]	95°C, 36% RH	~6.2x10 ^{-10[b]}	n/a	3.1x10 ⁻¹⁰
		80°C, 100% RH	1.9x10 ^{-8[b]}	n/a	9.5x10 ⁻⁹
4	Membrane chemical/mechanical AST lifetime ^[c] [h]		>660 ^[a]	n/a	1,000
5	5 HAST (aggressive current cycling) lifetime ^[d] [h]		650 ^[d]	n/a	TBD

[a] Nafion[™] NC-700 data from Chemours

[b] 5% Ce³⁺ in Nafion[™] NR-211 from A. M. Baker, et al., *ECS Trans.*, **92**, 429–438 (2019).

[c] Table P.5, U.S. DOE MYRDD Plan, Section 3.4 Fuel Cells, p. 50, (2016)

[d] Lai, et al., *J. Electrochem. Soc.*, **165**, F3217 (2018).

[e] HT-PFSA membrane in this study, no weak acid incorporated

PERFORMANCE & DURABILITY OF BASELINE MEMBRANES ACCOMPLISHMENTS & PROGRESS (TASK 2.2)


```
HAST Durability Testing<sup>[3]</sup>
Current cycling @ 90°C, 30% RH, 300 kPa<sub>abs</sub>
```

Current density	Voltage decay rate		
0.05 A/cm ²	0.06 ± 0.02 mV/hr		
1.2 A/cm ²	0.53 ± 0.18 mV/hr		
Drainet handling MEAs			

Project baseline MEAs

MEA	Membrane	Cathode Catalyst	Anode Catalyst	mg _{Pt} /cm² (Cath./An.)
Project baseline (NREL spray coat)	NC-700 (15 µm)	50% Pt/Vu	50% Pt/HSC	0.25/0.1
GM DOE SOA ^[1]	12 µm PFSA	30% PtCo/HSC	10% Pt/C	0.1/0.025
Toyota Mirai ^[2]	10 µm PFSA	PtCo/AB	Pt/C	0.32/0.1

Lower performance than other SOA MEAs

- Slightly thicker membrane
- Pure Pt instead of alloy
- Low surface area C support
- Lower loading than Mirai MEA

Durability experiments performed on baseline MEAs

Kumaraguru, U.S. DOE H2&FC Annual Merit Review (2019).
 Borup, More, and Myers, Report LA-UR-18-24454 (2018).
 Lai, et al., J. Electrochem. Soc., 165, F3217 (2018).

PERFORMANCE OF HT-PFSA MEMBRANES ACCOMPLISHMENTS & PROGRESS (TASK 2.2)

MEAs prepared by Chemours

- Anodes: 0.1 mg/cm² Pt/HSC
- Cathode: 0.4 mg/cm² PtCo/HSC

- At 95°C, 30% RH, the lower EW HT-PFSA improves on the baseline
 - 25 mV improvement at 1 A/cm²
 - >20% reduction in HFR
- Durability effect still needs to be confirmed

PAGE / 1

WEAK ACID MONOMER SYNTEHSIS ACCOMPLISHMENTS & PROGRESS (TASK 1.2)

- Novel monomer designed for implementation in PFSA polymer for reduced cerium mobility
- Monomer synthesis a target in Budget Period 1
 - 5g monomer targeted in Summer 2022
- 3-step monomer synthesis plan in place
- Successful demonstration of 3 mmol quantity of target monomer completed
- Refining steps/yields underway toward 5 g target

ш Ю

CERIUM OXIDE NANOPARTICLE DISSOLUTION ACCOMPLISHMENTS & PROGRESS (TASK 2.3)

- Ce cation dissolution rates of 3 commercial ceria powders measured using on-line ICP-MS
 - Average agglomerate sizes of ~175 nm measured via Zetasizer
- Dissolution rates qualitatively match previous trends: Undoped > Pr-doped > Zr-doped
 - State of agglomeration in membrane still unknown
- Presently investigating dissolution as a function of potential by adding carbon to electrodes

AST DEVELOPMENT PLAN (IN COLLABORATION WITH M2FCT) ACCOMPLISHMENTS & PROGRESS (TASK 4.1)

Power

Based on routes for target customer applications

- Hybridization strategy & control logic
- Battery sizing & chemistry
- Incorporates grade, GVW, CdA

- Smoothed transient current spikes
- Relevant redox events captured
- Incorporates voltage clipping

- Run 2 test protocols in parallel
- Periodically remove cells from short stack
- Compare property changes in various locations
- Identify any acceleration factors between tests
- Refine single cell protocol

RESPONSES TO REVIEWERS' COMMENTS ACCOMPLISHMENTS & PROGRESS

2021 AMR Comment	Response		
"The project should define appropriate targets and ASTs early in the project"	We adopted the HAST protocol for primary membrane evaluations, with an initial target that meets or exceeds baseline. Future AST development later in the project will involve multiple, synergistic MEA stressors.		
"It is not clear that the identified mobility target is enough to reach U.S. DOE targets for HD application"	We agree that this relationship has not been definitively established in the literature, however we believe that any improvement over the baseline is meaningful if it improves overall lifetime efficiency.		
"The project should determine whether scavengers can be regenerated"	Radical scavenger regeneration will be explicitly measured using <i>in situ</i> fluorescence experiments.		
"The task lists have too many parameters to choose and optimize"	The task list has been shortened to focus only on EW, thickness and additive content.		
"It looks like the project is targeting only a small improvement"	This project aims to enabling longer operation at high T/low RH excursions, as well as preventing conductivity & durability loss due to in-plane radical scavenger gradients.		

REMAINING CHALLENGES & BARRIERS

Challenge	Resolution		
Effectiveness of immobilization during polarization: <i>Will weak acids help Ce cations resist electric fields?</i>	 Use X-ray fluorescence to intermittently measure in-plane radical scavenger gradients during <i>ex situ</i> migration experiments Water gradient resistance expected to be similar to diffusion 		
Effectiveness of radical scavenging in immobilized systems: <i>Will Ce redox when associated with weak acid?</i>	 Quantify radical scavenging rate both in situ and in operando Optimize amount of "free" Ce relative to associated Ce 		
Negative effects of ionic crosslinking on membrane conductivity: <i>Is there a</i> <i>nonlinear decrease due to weak acids?</i>	Tune weak acid content in membraneOffset conductivity loss by using low EW ionomers		

YEAR 1 MILESTONES AND PROGRESS

Objective: Fabricate a membrane with increased performance and durability, especially at high temperatures

Relevance: Reduce TCO of HD PEM fuel cell systems by increasing the MEA lifetime efficiencies

Approach: Develop a HD-specific architecture containing advanced reinforcements, thermally-stable ionomers, and immobilized radical scavengers

	Milestone	Period	Progress	
N	Define initial MEA material set and test protocols	Q1	Complete	~
クロとりつ	Evaluate the performance and durability of a membrane with the new HT-PFSA and compare to Nafion™ NC700	Q2	Initial performance testing complete Baseline durability testing completed, awaiting subcontract agreement for further testing	✓✓
L L L	Synthesize 5 g of novel monomer	Q3	3 mmol quantity synthesized	Χ
	Measure dissolution and migration of CeM _y O _x in PFSA and compare it to Ce ³⁺	Q4	Improved dissolution resistance of CPO and CZO demonstrated	\mathbf{X}

PROPOSED FUTURE WORK

Selected milestones and expected results (Q1-4):

- Synthesize 5 g of novel radical scavenger immobilization monomer
- Measure performance and durability of membranes containing HT-PFSA ionomer
- Evaluate *ex situ* radical scavenger migration in membranes containing metal-doped ceria (CeMOx)

Go/No-Go Decision Point (Q6): Demonstrate a reinforced membrane with HT-PFSA that exhibits an area specific resistance of <0.1 Ω -cm² at 95°C, 36% RH and <0.02 Ω -cm² at 80°C, 100% RH while maintaining a gas crossover of <2 mA/cm²

Ċ

TECHNICAL BACKUP & ADDITIONAL INFORMATION

TECHNOLOGY TRANSFER ACTIVITIES

Patents: n/a

Tech-to-market activities

Commercialization of membrane technology is anticipated if proposed advances are realized

Future/Additional Funding: n/a

2

ш Ю

INITIAL MEA MATERIAL SET AND TEST PROTOCOLS MILESTONE M1

Milestone M1 (Q4 2021): Define initial MEA material sets and test protocols.

- Hardware: 50 cm² quad/quad serp, co-flow
- Membrane: Nafion[™] NC-700
- Catalysts: 50% Pt/HSC (TKK) / 50% Pt/Vu (TKK) [Anode/Cathode]
- Catalyst loading: 0.1 / 0.3 mg_{Pt}/cm² [Anode/Cathode]
- GDL: AvCarb GDS3250 @ ~20% compression
- Subgasket: 25 µm PTFE
- Break-in: 50 cm² M2FCT protocol, see right
- Polarization: see right (constant stoich's of 1.5/2)
- AST: OCV RHC // GM HAST (90C, 30% RH, 300 kPa_{abs} 0.05-1.2 A/cm²)
- Intermittent diagnostics: VIR, EIS(HFR), LSV/ECSA, FER (when available)
- Post mortem/EOT: thinning via SEM, in plane XRF for Ce migration, XY failure localization

ы В А

SLIDE 6 REFERENCES ADDITIVE FIGURE (TOP LEFT)

Radical Scavengers – See Slides 29 & 30

Heterpolyacids

- A. M. Herring et al., ECS Trans., vol. 3, no. 1, pp. 551–559, 2006, doi: 10.1149/1.2356176.
- A. M. Herring, R. J. Stanis, M.-C. Kuo, and J. A. Turner, ECS Trans., vol. 11, no. 1, pp. 337–346, 2007, doi: 10.1149/1.2780947.
- G. M. Haugen et al., Electrochem. Solid-State Lett., vol. 10, no. 3, pp. B51–B55, 2007, doi: 10.1149/1.2409057.
- R. P. Brooker, P. Baker, H. R. Kunz, L. J. Bonville, and R. Parnas, J. Electrochem. Soc., vol. 156, no. 11, p. B1317, 2009, doi: 10.1149/1.3216001.
- M. P. Rodgers et al., ECS Trans., vol. 16, no. 2, pp. 1951–1959, 2008, doi: 10.1149/1.2982035.
- J. M. Fenton et al., ECS Trans., vol. 25, no. 1, pp. 233–247, 2009.
- R. P. Brooker, L. J. Bonville, and D. K. Slattery, J. Electrochem. Soc., vol. 160, no. 1, pp. F75–F80, 2013, doi: 10.1149/2.017302jes.
- S. J. Hamrock et al., US Patent 8,206,874 B2, 2008.
- A. R. Motz et al., Energy Environ. Sci., vol. 11, no. 6, pp. 1499–1509, 2018, doi: 10.1039/c8ee00545a.

Peroxide Decomposition Catalysts

- P. Trogadas, J. Parrondo, and V. Ramani, Electrochem. Solid-State Lett., vol. 11, no. 7, pp. B113–B116, 2008, doi: 10.1149/1.2916443.
- P. Trogadas, J. Parrondo, F. Mijangos, and V. Ramani, J. Mater. Chem., vol. 21, no. 48, pp. 19381–19388, 2011, doi: 10.1039/c1jm14077a.
- A. K. Sahu, A. Jalajakshi, S. Pitchumani, P. Sridhar, and A. K. Shukla, J. Chem. Sci., vol. 124, no. 2, pp. 529–536, 2012, doi: 10.1007/s12039-011-0211-3.
- S. M. Andersen, C. F. Nørgaard, M. J. Larsen, and E. Skou, J. Power Sources, vol. 273, pp. 158–161, 2015, doi: 10.1016/j.jpowsour.2014.09.051.
- M. G. Poulsen, M. J. Larsen, and S. M. Andersen, J. Power Sources, vol. 343, pp. 174–182, 2017, doi: 10.1016/j.jpowsour.2017.01.046.
- N. R. de Tacconi et al., J. Electrochem. Soc., vol. 155, no. 11, p. B1102, 2008, doi: 10.1149/1.2969418.
- Y. Patil, S. Sambandam, V. Ramani, and K. Mauritz, J. Electrochem. Soc., vol. 156, no. 9, p. B1092, 2009, doi: 10.1149/1.3169512.
- Y. Patil and K. A. Mauritz J. Appl. Polym. Sci., vol. 113, pp. 3269–3278, 2009, doi: 10.1002/app.
- M. Tsipoaka, M. A. Aziz, J. Park, and S. Shanmugam, J. Power Sources, vol. 509, no. July, p. 230386, 2021, doi: 10.1016/j.jpowsour.2021.230386.
- S. Xiao et al., J. Power Sources, vol. 195, no. 24, pp. 8000–8005, 2010, doi: 10.1016/j.jpowsour.2010.06.052.
- D. Han, S. I. Hossain, B. Son, D. H. Lee, and S. Shanmugam, ACS Sustain. Chem. Eng., vol. 7, no. 19, pp. 16889–16899, 2019, doi: 10.1021/acssuschemeng.9b04492.
- N. R. Andrews, S. D. Knights, K. A. Murray, S. J. Mcdermid, S. M. MacKinnon, and S. Ye, US Patent 7,537,857 B2, 2003.
- P. Trogadas and V. Ramani, J. Electrochem. Soc., vol. 155, no. 7, pp. B696–B703, 2008, doi: 10.1149/1.2912830.
- A. Pozio, A. Cemmi, F. Mura, A. Masci, and R. F. Silva, Int. J. Electrochem., vol. 2011, no. i, pp. 1–5, 2011, doi: 10.4061/2011/252031.

Gas Crossover Reducers

- E. Endoh, S. Hommura, S. Terazono, H. Widjaja, and J. Anzai, ECS Trans., vol. 11, no. 1, pp. 1083–1091, 2007, doi: 10.1149/1.2781021.
- D. Zhao, B. L. Yi, H. M. Zhang, and M. Liu, J. Power Sources, vol. 195, no. 15, pp. 4606–4612, 2010, doi: 10.1016/j.jpowsour.2010.02.043.
- P. Trogadas, J. Parrondo, F. Mijangos, and V. Ramani, J. Mater. Chem., vol. 21, no. 48, pp. 19381–19388, 2011, doi: 10.1039/c1jm14077a.
- S. Helmly, B. Ohnmacht, R. Hiesgen, E. Gülzow, and K. A. Friedrich, J. Electrochem. Soc., vol. 161, no. 14, pp. F1416–F1426, 2014, doi: 10.1149/05801.0969ecst.
- M. Vinothkannan, A. R. Kim, G. Gnana Kumar, and D. J. Yoo, RSC Adv., vol. 8, no. 14, pp. 7494–7508, 2018, doi: 10.1039/c7ra12768e.
- S. I. Yoon et al., ACS Nano, vol. 12, no. 11, pp. 10764–10771, 2018, doi: 10.1021/acsnano.8b06268.
- M. Vinothkannan, A. R. Kim, S. Ramakrishnan, Y. T. Yu, and D. J. Yoo, Compos. Part B Eng., vol. 215, no. January, p. 108828, 2021, doi: 10.1016/j.compositesb.2021.108828.

SLIDE 6 REFERENCES

RADICAL SCAVENGER FIGURE (BOTTOM LEFT)- PART 1

Ce ions

- M. H. Frey, D. M. Pierpont, and S. J. Hamrock, US Patent 8,628,871 B2, 2005.
- E. Endoh, H. Kawazoe, and H. Nakagawa, ECS Trans., vol. 1, no. 8, pp. 221–227, 2006, doi: 10.1149/1.2214555.
- E. Endoh and S. Terazono, US Patent Application US 2007/0104994 A1, 2007.
- E. Endoh, ECS Trans., vol. 16, no. 2, pp. 1229–1240, 2008, doi: 10.1149/1.2981964.
- C. S. Gittleman, F. D. Coms, and Y. H. Lai, "Membrane Durability: Physical and Chemical Degradation," in Polymer Electrolyte Fuel Cell Degradation, 2011.
- E. Endoh et al., ECS Electrochem. Lett., vol. 2, no. 10, pp. F73–F75, 2013, doi: 10.1149/2.004310eel.
- S. M. MacKinnon, F. Coms, T. J. Fuller, C. S. Gittleman, and R. Jiang, US Patent 8,999,595 B2, 2015.
- M. Zatoń, B. Prélot, N. Donzel, J. Rozière, and D. J. Jones, J. Electrochem. Soc., vol. 165, no. 6, pp. F3281–F3289, 2018, doi: 10.1149/2.0311806jes.
- K. R. Yoon et al., Adv. Funct. Mater., vol. 29, no. 3, pp. 1–11, 2019, doi: 10.1002/adfm.201806929.
- V. D. Cong Tinh and D. Kim, J. Memb. Sci., vol. 613, no. May, p. 118517, 2020, doi: 10.1016/j.memsci.2020.118517.

CeO2

- M. H. Frey, D. M. Pierpont, and S. J. Hamrock, US Patent US 8,367,267 B2, 2005.
- P. Trogadas, J. Parrondo, and V. Ramani, *Electrochem. Solid-State Lett.*, vol. 11, no. 7, pp. B113–B116, 2008, doi: 10.1149/1.2916443.
- D. Zhao et al., J. Power Sources, vol. 190, no. 2, pp. 301–306, 2009, doi: 10.1016/j.jpowsour.2008.12.133.
- S. Xiao et al., J. Power Sources, vol. 195, no. 16, pp. 5305–5311, 2010, doi: 10.1016/j.jpowsour.2010.03.010.
- P. Trogadas, J. Parrondo, and V. Ramani, Chem. Commun., vol. 47, no. 41, p. 11549, Nov. 2011, doi: 10.1039/c1cc15155j.
- P. Trogadas, J. Parrondo, and V. Ramani, ACS Appl. Mater. Interfaces, vol. 4, no. 10, pp. 5098–5102, 2012, doi: 10.1021/am3016069.
- B. P. Pearman et al., J. Power Sources, vol. 225, pp. 75–83, Mar. 2013, doi: 10.1016/j.jpowsour.2012.10.015.
- B. P. Pearman et al., Polym. Degrad. Stab., vol. 98, no. 9, pp. 1766–1772, Sep. 2013, doi: 10.1016/j.polymdegradstab.2013.05.025.
- L. Wang, S. G. Advani, and A. K. Prasad, Electrochim. Acta, vol. 109, pp. 775–780, 2013, doi: 10.1016/j.electacta.2013.07.189.
- M. Zaton, D. Jones, and J. Rozière ECS Trans., vol. 61, no. 23, pp. 15–23, 2014, doi: 10.1149/06123.0015ecst.
- S. M. Stewart, D. Spernjak, R. Borup, A. Datye, and F. Garzon, ECS Electrochem. Lett., vol. 3, no. 4, pp. F19–F22, 2014, doi: 10.1149/2.008404eel.
- S. M. Stewart, "Nanoparticle Cerium oxide and Mixed Cerium Oxides for Improved Fuel Cell Lifetime," University of New Mexico, 2014.
- C. Lim, A. S. Alavijeh, M. Lauritzen, J. Kolodziej, S. Knights, and E. Kjeang, ECS Electrochem. Lett., vol. 4, no. 4, pp. F29–F31, 2015, doi: 10.1149/2.0081504eel.
- M. Breitwieser et al., Adv. Energy Mater., vol. 7, p. 1602100, 2016, doi: 10.1002/aenm.201602100.

A G E /

2

SLIDE 6 REFERENCES

RADICAL SCAVENGER FIGURE (BOTTOM LEFT)- PART 2

Doped CeO2

- P. Trogadas, J. Parrondo, and V. Ramani, ACS Appl. Mater. Interfaces, vol. 4, no. 10, pp. 5098–5102, 2012, doi: 10.1021/am3016069.
- A. M. Baker et al., J. Mater. Chem. A, vol. 5, pp. 15073–15079, 2017, doi: 10.1039/C7TA03452K.
- N. Ramaswamy, US DOE H2&FC Annual Merit Review, 2021.
- S. M. Stewart, D. Spernjak, R. Borup, A. Datye, and F. Garzon, ECS Electrochem. Lett., vol. 3, no. 4, pp. F19–F22, 2014, doi: 10.1149/2.008404eel.
- S. M. Stewart, "Nanoparticle Cerium oxide and Mixed Cerium Oxides for Improved Fuel Cell Lifetime," University of New Mexico, 2014.
- M. Vinothkannan, S. Ramakrishnan, A. R. Kim, H. K. Lee, and D. J. Yoo, ACS Appl. Mater. Interfaces, vol. 12, no. 5, pp. 5704–5716, 2020, doi: 10.1021/acsami.9b18059.

Ce Compounds

- S. M. Stewart, D. Spernjak, R. Borup, A. Datye, and F. Garzon, ECS Electrochem. Lett., vol. 3, no. 4, pp. F19–F22, 2014, doi: 10.1149/2.008404eel.
- S. M. Stewart, "Nanoparticle Cerium oxide and Mixed Cerium Oxides for Improved Fuel Cell Lifetime," University of New Mexico, 2014.
- A. M. Baker et al., J. Mater. Chem. A, vol. 5, pp. 15073–15079, 2017, doi: 10.1039/C7TA03452K.
- R. Mukundan et al., J. Electrochem. Soc., vol. 165, no. 6, pp. F3085–F3093, 2018, doi: 10.1149/2.0101806jes.
- A. M. Baker, L. Wang, W. B. Johnson, A. K. Prasad, and S. G. Advani, J. Phys. Chem. C, vol. 118, pp. 26796–26802, 2014, doi: 10.1021/jp5078399.
- K. Ketpang, K. Oh, S. C. Lim, and S. Shanmugam, J. Power Sources, vol. 329, pp. 441–449, 2016, doi: 10.1016/j.jpowsour.2016.08.086.
- M. Vinothkannan, et al., ACS Sustain. Chem. Eng., vol. 7, no. 15, pp. 12847–12857, 2019, doi: 10.1021/acssuschemeng.9b01757.
- C. D'Urso, C. Oldani, V. Baglio, L. Merlo, and A. S. Aricò, J. Power Sources, vol. 272, pp. 753–758, 2014, doi: 10.1016/j.jpowsour.2014.09.045.
- C. D'Urso, C. Oldani, V. Baglio, L. Merlo, and A. S. Aricò, Int. J. Hydrogen Energy, vol. 42, no. 46, pp. 27987–27994, 2017, doi: 10.1016/j.ijhydene.2017.07.111.
- V. D. Cong Tinh and D. Kim, J. Memb. Sci., vol. 613, no. May, p. 118517, 2020, doi: 10.1016/j.memsci.2020.118517.

Mn lons

- N. R. Andrews, S. D. Knights, K. A. Murray, S. J. Mcdermid, S. M. MacKinnon, and S. Ye, US Patent 7,537,857 B2, 2003.
- M. H. Frey, G. M. Haugen, S. J. Hamrock, and P. T. Pham, US Patent US 8,101,317 B2, 2012.
- M. H. Frey, D. M. Pierpont, and S. J. Hamrock, US Patent 8,628,871 B2, 2005.
- F. D. Coms, H. Liu, and J. E. Owejan, ECS Trans., vol. 16, no. 2, pp. 1735–1747, 2008, doi: 10.1149/1.2982015.
- G. Haugen, S. Barta, M. Emery, S. Hamrock, and M. Yandrasits, ACS Symp. Ser., vol. 1040, pp. 137–151, 2010, doi: 10.1021/bk-2010-1040.ch010.
- M. Zatoń, B. Prélot, N. Donzel, J. Rozière, and D. J. Jones, J. Electrochem. Soc., vol. 165, no. 6, pp. F3281–F3289, 2018, doi: 10.1149/2.0311806jes.

MnO2

- N. R. Andrews, S. D. Knights, K. A. Murray, S. J. Mcdermid, S. M. MacKinnon, and S. Ye, US Patent 7,537,857 B2, 2003.
- D. Zhao, B. L. Yi, H. M. Zhang, and H. M. Yu, J. Memb. Sci., vol. 346, no. 1, pp. 143–151, 2010, doi: 10.1016/j.memsci.2009.09.031.
- M. Lei et al., J. Power Sources, vol. 230, pp. 96–100, 2013, doi: 10.1016/j.jpowsour.2012.12.011.

SLIDE 8 REFERENCES

Relative gas crossover vs. temperature

- J. Zhang, Y. Tang, C. Song, J. Zhang, and H. Wang, J. Power Sources, vol. 163, no. 1, 2006.
- C. Francia, V. S. Ijeri, S. Specchia, and P. Spinelli, J. Power Sources, vol. 196, no. 4, pp. 1833–1839, 2011.
- M. Schalenbach, T. Hoefner, P. Paciok, M. Carmo, W. Lueke, and D. Stolten, J. Phys. Chem. C, vol. 119, no. 45, pp. 25145–25155, 2015.
- K. D. Baik and M. S. Kim, Int. J. Hydrogen Energy, vol. 36, no. 1, pp. 732–739, 2011,.
- M. Inaba, T. Kinumoto, M. Kiriake, R. Umebayashi, A. Tasaka, and Z. Ogumi, Electrochim. Acta, vol. 51, no. 26, pp. 5746–5753, 2006.

Relative gas crossover vs. thickness

- M. Zhao et al., Electrochim. Acta, vol. 153, pp. 254–262, 2015.
- X. Z. Yuan et al., J. Power Sources, vol. 195, no. 22, pp. 7594–7599, 2010.
- B. Hwang, H. Lee, and K. Park, *Korean Chem. Eng. Res.*, vol. 55, no. 4, pp. 473–477, 2017.
- J. M. Fenton *et al.*, *ECS Trans.*, vol. 25, no. 1, pp. 233–247, 2009.
- W. Liu, K. Ruth, and G. Rusch, J. New Mater. Electrochem. Syst., vol. 4, pp. 227–231, Aug. 2001.

Relative fluoride ion emission rate vs. temperature

- V. A. Sethuraman, J. W. Weidner, A. T. Haug, and L. V Protsailo, J. Electrochem. Soc., vol. 155, no. 2, p. B119, 2008.
- M. P. Rodgers *et al.*, *ECS Trans.*, vol. 58, no. 1, pp. 129–148, 2013.
- N. Zhao, Y. Chu, Z. Xie, K. Eggen, F. Girard, and Z. Shi, Fuel Cells, no. 0, pp. 1–9, 2020.
- R. K. Ahluwalia, X. Wang, and J. Peng, "Fuel Cells Systems Analysis," 2015.
- V. Prabhakaran, C. G. Arges, and V. Ramani, *Phys. Chem. Chem. Phys.*, vol. 15, no. 43, pp. 18965–18972, 2013.
- T. Madden *et al.*, *J. Electrochem. Soc.*, vol. 156, no. 5, pp. B657–B662, 2009.
- J. Li, K. Wang, and Y. Yang, ECS Trans., vol. 25, no. 1, pp. 385–394, 2009.
- S. Kumaraguru, "Durable High Power Membrane Electrode Assembly with Low Pt Loading," 2021.
- S. Schlick, The chemistry of membranes used in fuel cells: Degradation and stabilization. 2018.

ы В А