

M2FCT: Million Mile Fuel Cell Truck Consortium

DOE Hydrogen Fuel Cell Technologies Office 2022 Annual Merit Review and Peer Evaluation Meeting June 6–8, 2022

Co-Directors: Rod Borup (LANL), Adam Weber (LBNL)

Deputy Directors: Rajesh Ahluwalia (ANL), Rangachary Mukundan (LANL), Debbie Myers (ANL), K.C. Neyerlin (NREL)

DOE AOP project award: WBS 1.5.0.402

This presentation does not contain any proprietary, confidential, or otherwise restricted information

M2FCT Consortium - Overview

<u>Timeline</u>

- Project start date: 10/01/2020
- Project end date: 09/30/2025

Budget

- FY20 project funding: \$10M
 - \$1.5M Effort to Support FOAs
 - 5-year consortium with yearly milestones & Go/No-Go

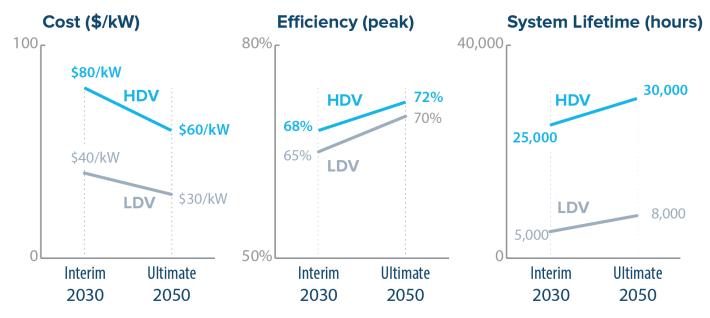
<u>Partners/Collaborations</u>

- DOE DE-FOA-0002044:
 - 🌭 GM, Nikola, Carnegie Mellon
- **DOE DE-FOA-EE0009244**:
 - 🌭 3M, Lubrizol, Nikola, UT Knoxville
 - Scummins, Plug Power
- Discretionary Project Additions
 - ✤ UCI, UCM, SUNY Buffalo, Drexel, FIU
- No-cost collaborations

Heavy-Duty Transportation (2025)

- Durability: 25,000 hour lifetime
- 68% peak efficiency
- \$80/kW fuel cell system cost
- Overall Target: 2.5 kW/g_{PGM} power (1.07 A/cm² current density) at 0.7 V after 25,000 hour-equivalent accelerated durability test

Heavy-Duty Transportation (2030)


- Durability: 30,000 hour lifetime
- 72% peak efficiency
- \$60/kW fuel cell system cost

M2FCT focuses on fuel-cell trucks that demand a greater emphasis on system efficiency and longer lifetimes

The change in focus from light-duty (LDV) to heavy-duty vehicles (HDV) exacerbates durability and efficiency challenges for fuel cells, requiring material and system innovations that enable new classes of hydrogen vehicles that take advantage of the high efficiency, power density and scalability of this technology.

DOE Targets for Fuel-Cell Vehicles

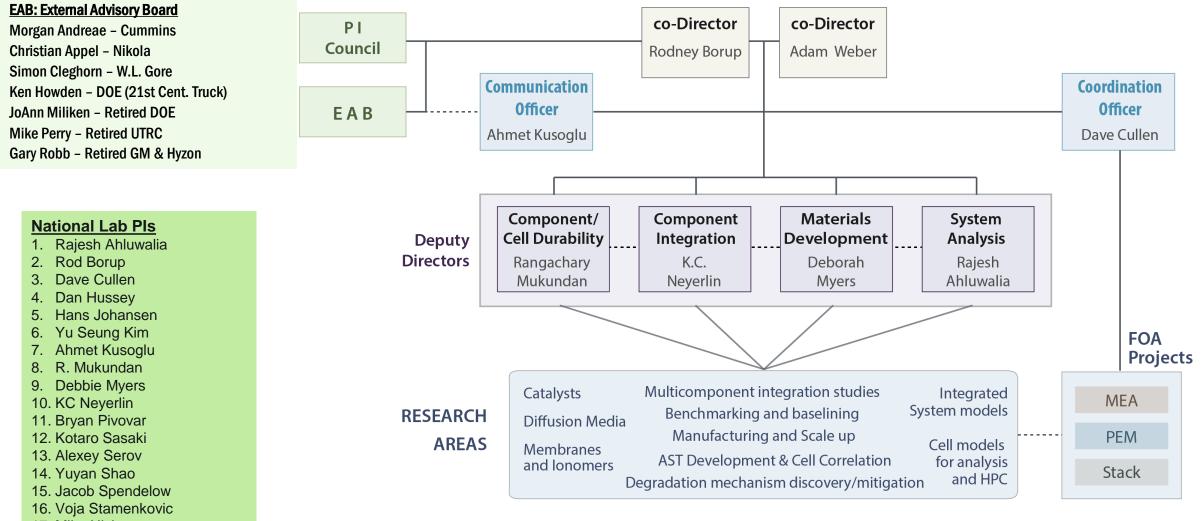
Light Duty Vehicles (LDV) 🚗 vs. . Heavy Duty Vehicles (HDV)

Fuel-Cell Vehicles Durability Targets

DOE HFTO Program Record 19006 | Nature Energy (2021) 6, 462-474 New roads and challenges for fuel cells in heavy-duty transportation

M2FCT Partners: National Labs, Universities, Industry

"Team-of-teams" approach for rapid feedback, idea development, information exchange, resulting in an effort that is more than the sum of its parts

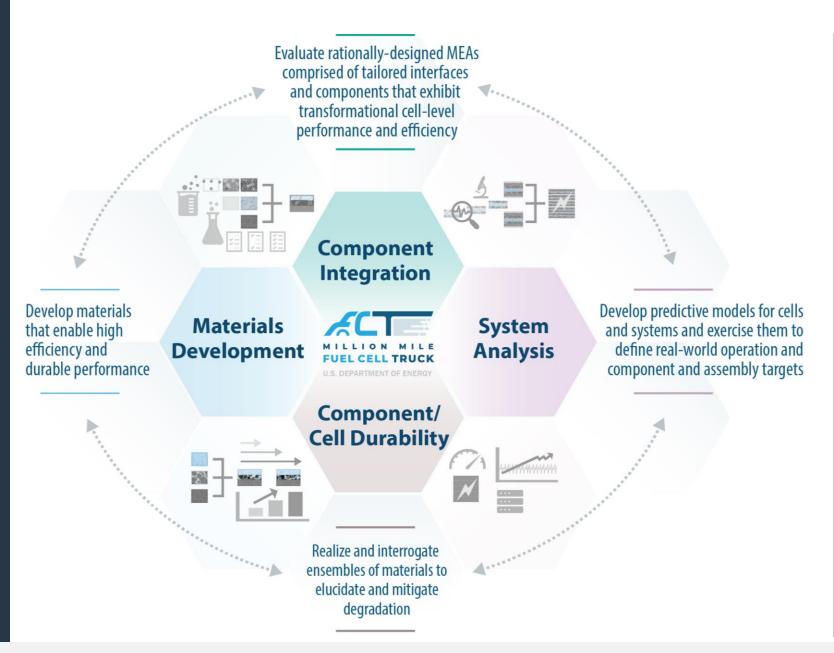


FUEL CELL TRUCK

https://millionmilefuelcelltruck.org/partners

1st in-person M2FCT meeting held Santa Fe, March 2,3

Organization Chart



- 17. Mike Ulsh
- 18. Adam Weber

M2FCT Approach

Million Mile Fuel Cell Truck (M2FCT) aims to tackle challenges through a "team-ofteams" approach featuring main teams in analysis, durability, integration, materials development.

By coming together as sets of dynamic teams, the integrated consortium will provide rapid feedback, idea development, and information exchange, resulting in an effort that is more than the sum of its parts.

Approach

M2FCT: Originally NOT Included

May be included in **future** FOAs as part of the M2FCT:

- It is to lower cost across heavy-duty applications
- Salance-of-plant components, including **air management** and low-cost power electronics
- Advanced bipolar plates/coatings
- Addressing unique, heavy duty application specify durability challenges, including saline contamination for marine, power density and ruggeridization for rail, and specific energy for aviation

NOT Included:

- Section 24 Section 24
- ✤ Fuel quality studies
- ✤ Fuel cells other than PEM (e.g., alkaline fuel cell technologies, solid oxide fuel cells)

Bipolar Plates

- M2FCT interactions and SOW related to BPP projects under discussion
- Durability AST projecting HDV life
 needed

M2FCT Consortium		Goal @ Develop materials that enable high efficiency and durable performance		Goal ④ Realize and interrogate ensembles of materials to elucidate and mitigate degradation
Degradation Discovery AST Development	MEA AST Development	AST Testing & Component Degradation Mitigation	Synergistic Degradation Mitigation	
Materials	Catalysts	Catalyst Layer: Catalyst Ink + Ionomer	Components ⇒ MEA	MEA ⇒ HDV Fuel Cell
Materials Baselining	Diffusion Media	Diffusion Media		
Integration & Analysis		Ionomer-Membrane		2.5 kW/g _{PGM} power (1.07 A/cm ² current density at 0.7 V)
Predictive System Models Define Real-world Operation	MEA Benchmarking Component Models	Component Down-selection Predictive Cell Models	MEA Manufacturing Cell Characterization	after 25,000 hour-equivalent accelerated durability test
Establishing Benchmark Material Discovery Year 1	Material Synthesis and Development for Efficiency Year 2	Materials Selection, Optimization for Efficiency & Durability Year 3	Integrated Assembly Testing and Optimization Year 4	Cell Efficiency and Durability Target Year 5

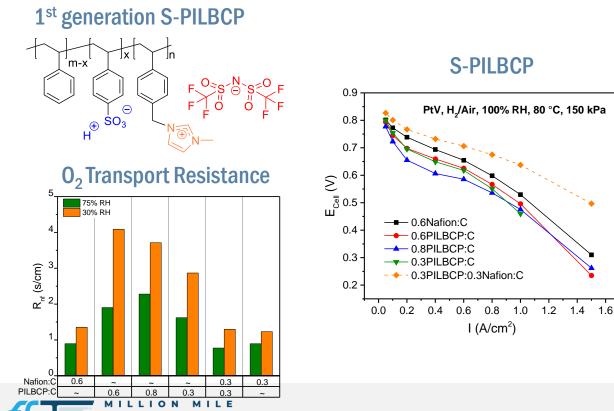
FY22 Milestones

Milestone Name / Description and Criteria	Quarter	Responsible
Name: Analysis of Efficiency and Fuel Consumption		
Report of analysis results related to efficiency and fuel consumption over the entire vehicle lifetime	Q1	Rajesh
with correlation to MEA degradation (LANL, ANL, NREL, ORNL)		
Name: Catalyst dissolution models	01	Adam
Convergence of catalyst dissolution models (LBNL, ANL)	Q1	Auam
Name: Drive Cycle Carbon Corrosion measurements		
Complete NDIR measurements for carbon corrosion for three different drive cycle conditions. Drive	Q2	Rod
cycles will simulate different HDV power sizes (150 kW, 275 kW, 450 kW) (LANL, NREL)		
Name: Catalyst material Go/No-Go (PNNL, ANL, LANL, NREL, BNL)		
Demonstrate ≥ State-of-the-Art (Defined by Year 1 Bench-Marking) at 0.8 V on hydrogen-air at 250	Q2*	Debbie
kPa, 100% RH, 80°C cell temperature after 90,000 catalyst AST cycles (or equivalent of M2FCT-		DENNE
developed AST) using an MEA with ≤0.3 mg/cm ² Total PGM loading		

FY22 Milestones

Quarter	Responsible
Q3	КС
Q3	Ahmet
Q4	Rod
Q4	Mukund
	Q3 Q3 Q4

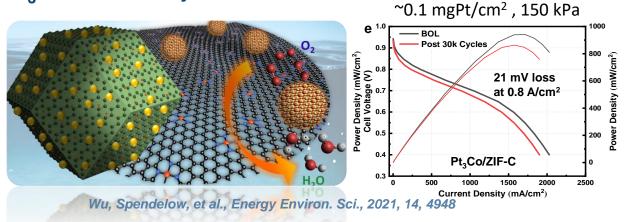
^{*}Can be extended to 24 (Q8) months as no-cost extension



Advanced PILBCP Ionomer Composites for Durable Heavy Duty PEMFCs

Joshua Snyder (PI; Drexel), Yossef Elabd (TAMU), Rui Sun (TAMU)

- Identification and synthesis of new S-PILBCP chemistries
- Open questions related to polymer structure at catalyst layer relevant thicknesses
- Clearer picture of mechanism of kinetic enhancement
- Batch scale-up
 - ♦ Validation of MEA performance for larger batch sizes
- Direct measure of impact of S-PILBCP on catalyst durability
 In-situ ICP-MS
- Electrode structural characterization


(PILBCP: polymerized ionic liquid block co-polymer)

BUFFALO STATE The State University of New York

Integrating Highly Durable Carbon Supports and Intermetallic PtCo Catalysts for Heavy-Duty MEAs Gang Wu

Integrate the promising PGC/M-N-C support and the ordered PtCo intermetallic nanoparticles includes **four tasks**:

- (1) Engineering the PGC/M-N-C supports to uniformly dispersed Pt₃Co intermetallic nanoparticles concerning optimal carbon nanostructure, morphologies, degree of graphitization, and nitrogen dopants to strengthen metalsupport interactions;
- (2) Controlling ordering structures, particle sizes, and Pt loadings (up to 40 wt.% against carbon) of Pt₃Co intermetallic alloy for optimal activity-stability trade-off;
- (3) Optimizing ink preparation and electrode structure for maximum durability and power density;
- (4) Evaluating catalyst and support stability for heavy-duty applications.

Real-Time Continuous Monitoring of Ionomer Degradation with Ion-Sensitive Field-Effect Transistor (ISFET) Microsensors

Dongmei Dong (PI), Shekhar Bhansali (Co-PI), Tinsley Benhaddouch

Develop F- Sensor as FC Diagnostics Tool

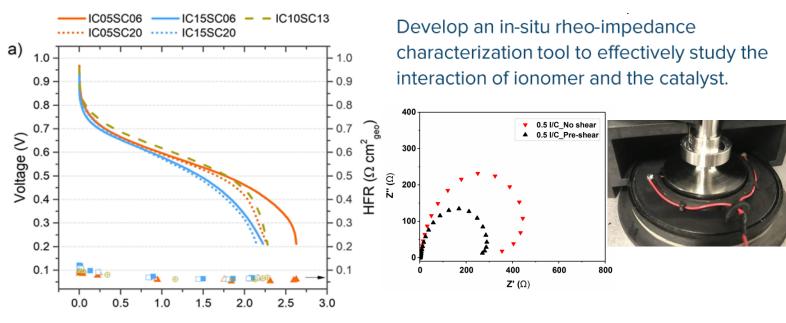
ISFET Electrochemical Sensor:

Patent No.: US 10,739,305 B1 Date of Patent: Aug.11, 2020

Integrate microsensors to new FC vehicles design

- Develop *Operando* complementary characterizations to existing techniques:
 - Superior Sensing gate: Hydrogel/MOF
 - ♥ Probe membrane degradation rates with increased temporal resolution
- Employ AI/DL architectures for sensor-based predictive maintenance of fuel cells
- Bring a miniaturized/portable/user-friendly specific diagnostics tool for fuel cell degradation quantitative analysis
- Ionomer Degradation:
 - Solution Advanced sensors and spatial/temporal probing diagnostics
 - Solution Section Secti

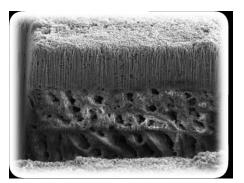
FUEL CELL TRUCK

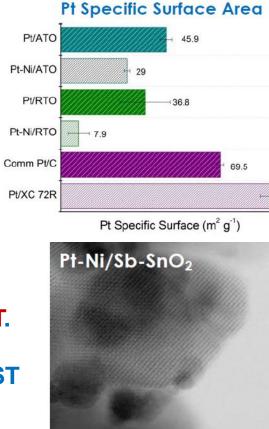

UNIVERSITY OF CALIFORNIA

Characterization and Simulation of Interfacial Transport Phenomena in the electrode using Impedance and Imaging Tools

Abel Chuang (PI), Nitul Kakati, Marc Labata, Shirin Mehrazi, Donglei Yang

Rheological study of catalyst ink dispersion.


- Apply rheo-impedance to study inks with various constituents, such as solvent, ionomer content, and other additives, for developing a fundamental understanding of the effectiveness of the tool.
- Develop the capability of STEM-EDS study of the catalyst ink in its liquid state by fabricating a graphene liquid cell.
- Perform fuel cell testing to quantify ECSA and proton transport resistance of the catalyst layer and evaluate overall performance.
- Develop 1-D catalyst layer model for performance prediction.

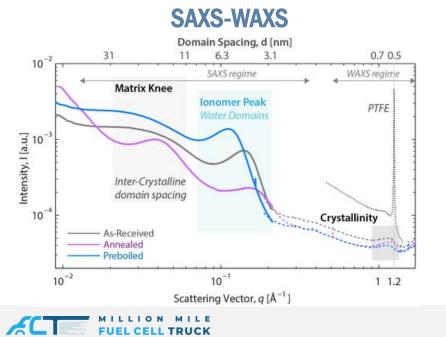


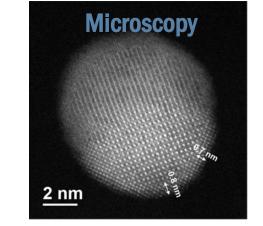
Materials and Design Solutions for PEMFC Durability Plamen Atanassov and Iryna Zenyuk

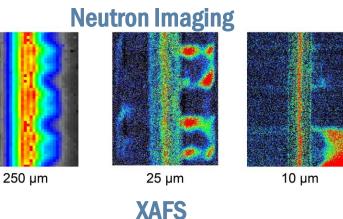
GD-OES and micro-XCT. MEA prior, during (*operando*) and post AST will be evaluated.

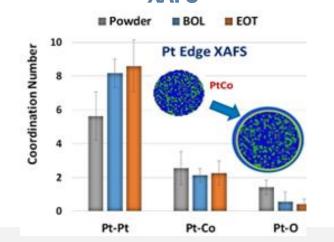
Analysis

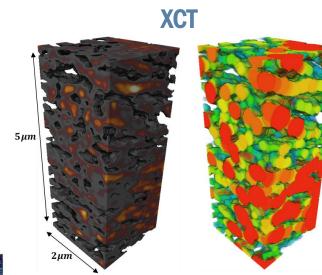
Develop degradation analysis based on Glow Discharge – Optical Emission Spectroscopy (GD-OES). Establish methodology for structure-to-property relationship with in-house XPS surface analysis and M2FCT FIB-SEM for dept profiling and 3D structure elucidation.

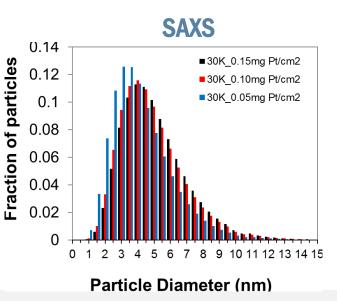

Materials


Develop non-carbon catalyst supports based on highly conductive transition metal oxides Sb-SnO_x and/or Nb-TiO_x families. Evaluate stability 95°C and corrosion resistance. Establish materials/chemical stability at 120°C.

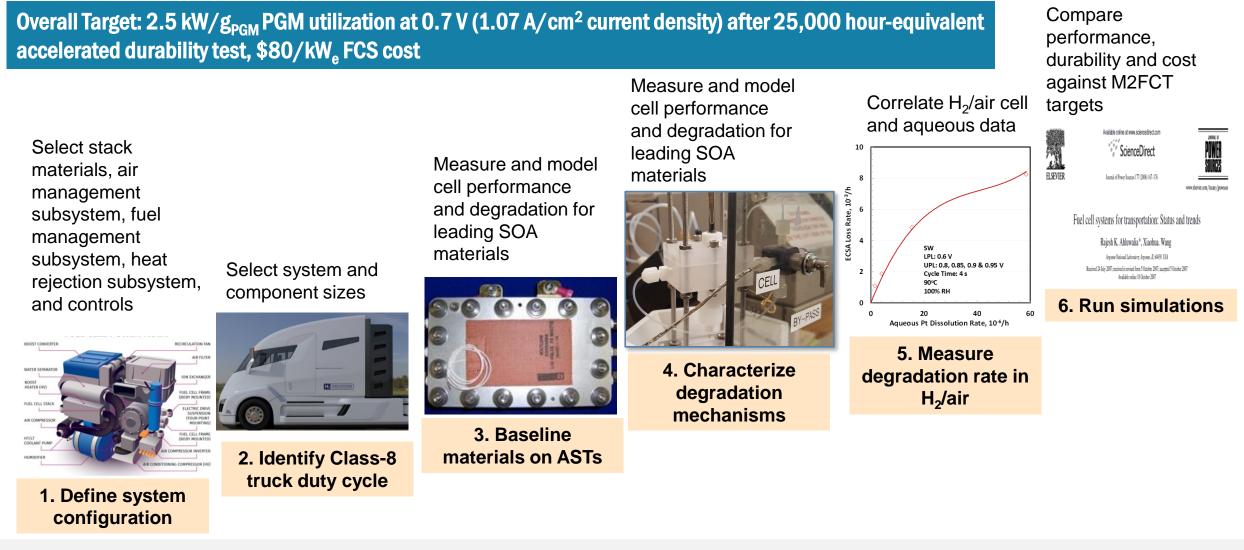

Develop composite carbo/ceramic structures based on integrating those oxide materials with specialty carbons: industrial research samples and/or in-house synthetic carbons.

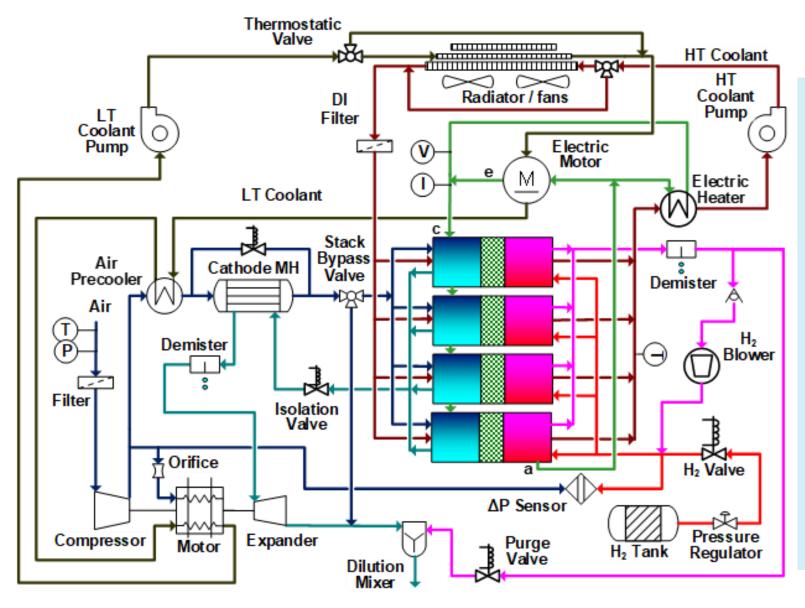

M2FCT User Facilities Engaged


- Advanced Light Source (ALS)
- Advanced Photon Source (APS)
- Center for Integrated Nanotechnology (CINT)
- Center for Nanophase Materials Sciences (CNMS)
- Los Alamos Neutron Science Center (LANSCE)
- Molecular Foundry
- NIST Center for Neutron Research (NCNR)
- High Flux Isotope Reactor (HFIR)
- Spallation Neutron Source (SNS)



Spatial distribution of agglomerates





Baselining Materials, Performance, Durability and Cost of Fuel Cell Systems for Heavy Duty Trucks

M2FCT Reference Fuel Cell System for Heavy-Duty Trucks

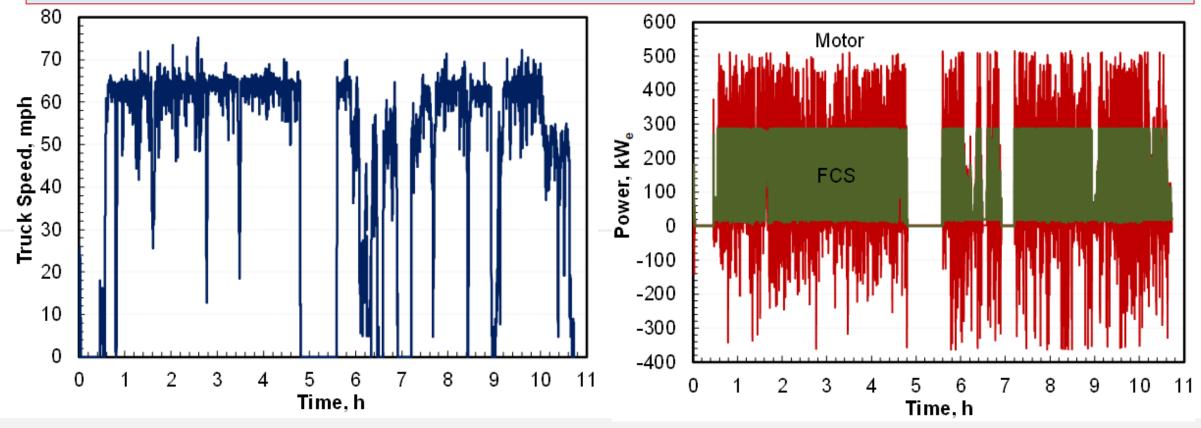
Salient Features

- 275 kW net (70-kWh ESS) at EOL
- Multiple stacks: 4

Electrodes

Cathode: a-Pt/C, 0.25 mg_{Pt}/cm^2 , 50 wt.% Pt Anode: Pt/C w IrO₂, 0.05 mg_{Pt}/cm^2

- Membrane: 14 µm, chemically stabilized, mechanically reinforced
- Single air system with expander
- Single anode system with recirculation blower
- Cathode humidifier: Cross-flow with high flux WVT membrane
- Rated power conditions at EOL: 2.5 atm, 90°C, 700 mV
- Control valves for startup and shutdown, cold start and OCV

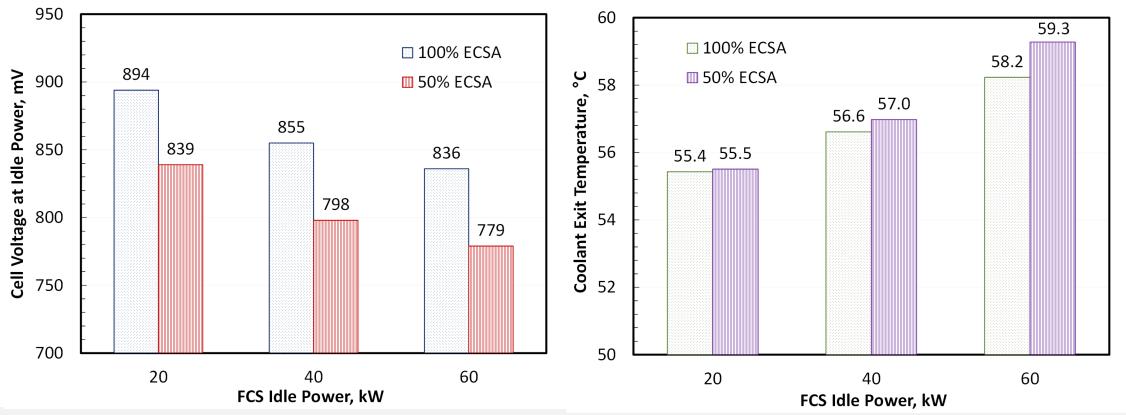

21st Century Truck Partnership Long-Haul Duty Cycle

Real World Drive Cycle

- Gross Vehicle Weight (GVW): 36.3 MT (80,000 lbs)
- 10.5-h drive segment, 3 extended idles with engine off
- Truck speed around 65 mph

Motor Power

- Maximum power on drive cycle: 500 kW_e
- Motor input power on 6% grade at 30 mph, 36.3-MT GVW: 400 kW
- Motor input power at 65-mph, 0% grade: 160 kW
- Selected 400-kW_e hybrid platform to meet power demand on 6% grade at 30 mph subject to heat rejection constraint: 275 kW_e FCS, 70 kWh ESS

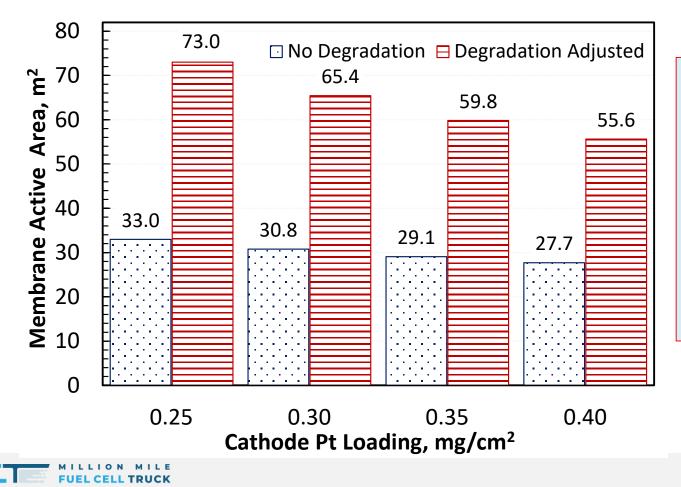


FUEL CELL TRUCK Autonomy simulation resu

Key Parameters that Control Electrode Lifetime: Idle Power and Coolant Exit Temperature

Target average ECSA loss rate parameter for 50% ECSA Loss after 25,000 h: 40x10⁻⁶/h (0.04/1000 h)

- Peak cell voltage at BOL: Below 835 mV
- FCS idle power: 60 kW
- Coolant exit temperature during idling (BOL): 58°C
- Idle fan power: 750 W for 60 kW FCS idle power, 12.5 W(fan)/kW(FCS)

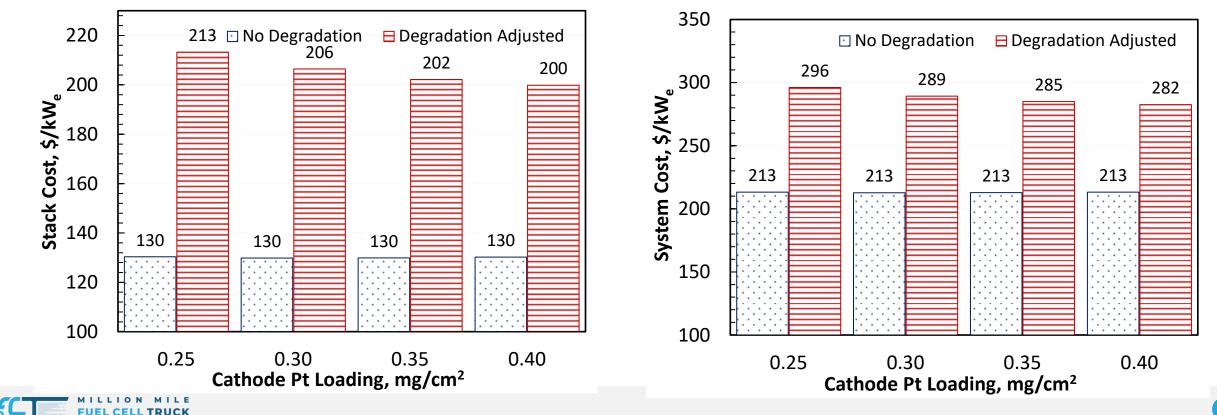


Degradation Adjusted Performance – Total Active Membrane Area

Required membrane area and allowance for degradation to reach 25,000-h electrode lifetime are smaller for higher Pt loading in cathode electrode

- 0.25 mg/cm² Pt loading: 73 m² membrane area, 120% allowance for catalyst degradation
- 0.40 mg/cm² Pt loading: 59.4 m² membrane area, ~100% allowance for catalyst degradation

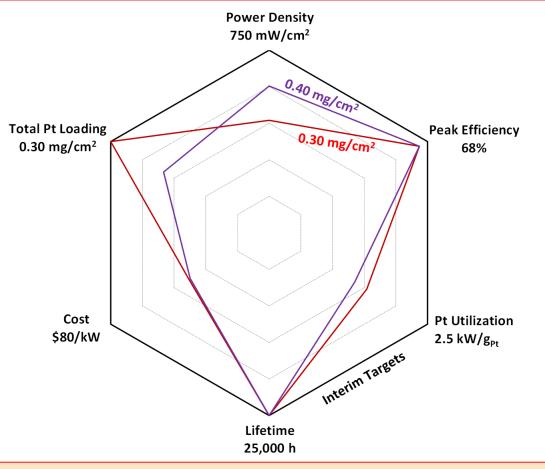
Electrode Lifetime


- EOL Definition: Produce 275 kW_e at 0.7 V, 2.5 atm, 90°C coolant exit temperature, 1.5 cathode stoichiometry
- ECSA Loss at EOL on Class-8 Drive Cycle from degradation Model: 56.5%
- BOL Conditions from Performance Model: Rated power at 0.780 V and heat rejection conditions listed above

Degradation Adjusted Cost

Preliminary projections of degradation adjusted system cost for 1,000 units/year manufacturing rate using cost correlations from Jennie Huya-Kouadio, Strategic Analysis

 64% increase in stack cost and 39% increase in FCS cost for 0.30 mg/cm² total Pt loading Case for Higher Pt Loading in Cathode (0.40 mg/cm²)


- Pro: 24% more compact stack
- Pro: 6% lower cost
- Con: 12% penalty in Pt utilization

Analysis Status

Status of Fuel Cell Systems for Class-8 Heavy Duty Trucks

- Key barrier to meeting the interim targets: Active and stable catalysts capable of meeting the target of 750 mW/cm² power density at EOL with 0.3 mg/cm² Pt loading
- Need to address membrane durability

Projected cost at 100,000 units/year manufacturing rate using cost correlations from Jennie Huya-Kouadio, Strategic Analysis **Future Work**

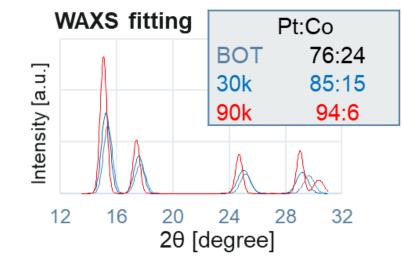
- Drive cycle modified for durability
- Membrane durability
- Carbon corrosion
- Higher activity and more stable catalysts

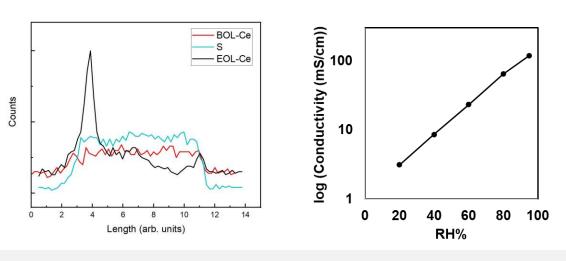
Small Stack (175 kW_e System), Large Battery Hybrid System

- Minimum battery capacity for 22-min hill climb at 6% grade: 127 kWh
- Stack coolant exit temperature: 85°C
- EOL Stack power density at 0.7 V: TBD
- Stack oversizing to accommodate performance degradation: TBD
- Total system parasitic power at EOL: 17.3%

Large Stack (425 kW_e System), Small Battery Hybrid System

- Minimum battery capacity for transients on reference duty cycle and idling: 10 kWh
- Stack coolant exit temperature: 95°C
- Radiator frontal area: 50% larger than in diesel truck
- EOL Stack power density at 0.7 V: TBD
- Stack oversizing to accommodate performance degradation: TBD
- Total system parasitic power at EOL: 23.7%


Materials Development


Issues with Current Catalysts and Ionomers for Heavy-Duty Applications

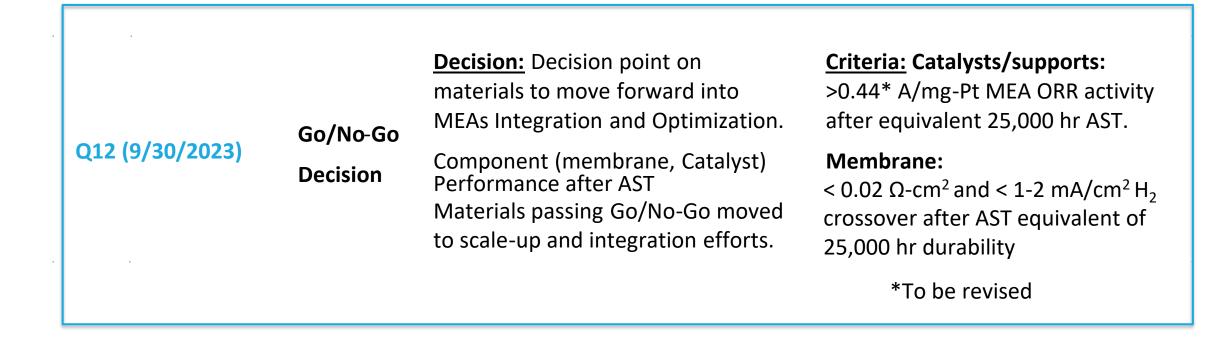
Cathode Catalysts:

- Transition metal alloys of Pt (e.g., Pt-Co, Pt-Ni) have higher oxygen reduction reaction (ORR) activity per gram Pt than Pt only
- However, transition metals leach from Pt-transition metal alloy particles until reaching ≈8 mol% transition metal
- Platinum particle size increases with cycling due to particle size dependence of Pt dissolution; Pt dissolution is significant at potentials > 0.85 V
- Example: 90K cycles between 0.6 and 0.95 V for Umicore Pt₃Co/HSC:
 - ✓ 50% ECA loss, MA 824 to 152 A/g-Pt, loss of Co from 24 to 6 mol%
- High efficiencies need for heavy-duty applications require higher performance at high cell voltages throughout 25,000 h lifetime
 - Requires higher-performing, stable cathode catalysts that resist particle growth and loss of ORR specific activity

Umicore Elyst 0690 Cathode Catalyst; AST cycling: H_2/N_2 , 0.6 to 0.95 V trapezoid, 2.5 s each potential

Ionomers/membranes:

- Current perfluorinated sulfonic acid (PFSA) ionomers have performance and durability limitations, particularly at high temperatures and low RH
- Hydrogen crossover through current membranes decreases efficiency
- Sulfonate in PFSA ionomers poisons Pt catalyst; PFSA ionomers cause local O₂ transport resistance
- Main chemical degradation mechanism is radical attack traditional radical scavengers (e.g., Ce) are mobile

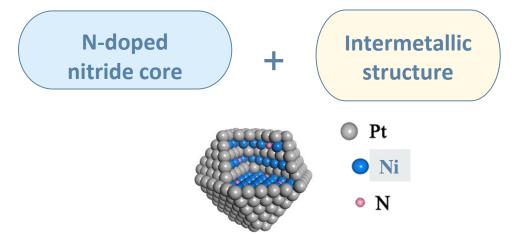

M2FCT's Materials Development Sub-Tasks

- Catalyst/Support Development
 - "Pt-Co Intermetallics", Los Alamos NL, Jacob Spendelow
 - "Metal oxide-metal-carbon junction to stabilize PtM NPs catalysts", Pacific Northwest NL, Yuyan Shao
 - "Nitrogen-Doped PtMN Catalysts and Supports", Brookhaven NL, Kotaro Sasaki
 - "Tailored Pt-nanomaterials, supports, and interfaces", UC-Irvine and Argonne NL, Vojislav Stamenkovic
- Membrane/Ionomer Development
 - "High-conductivity Novel Perfluorinated Ionomers", National Renewal Energy Laboratory, Bryan Pivovar
 - "Low Molecular Weight Oligomeric Electrode and Membrane Ionomers", Los Alamos NL, Yu Seung Kim
- Supporting Efforts
 - Electron microscopy, Michael Zachman/Dave Cullen, Oak Ridge NL
 - Synchrotron X-ray characterization, Debbie Myers, Argonne NL
 - Fundamental studies of ionomers and membranes, Ahmet Kusoglu, Lawrence Berkeley NL

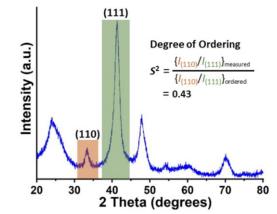
Materials Development QPM-Go/No-Go

Catalyst Development Go/No-Go Decision

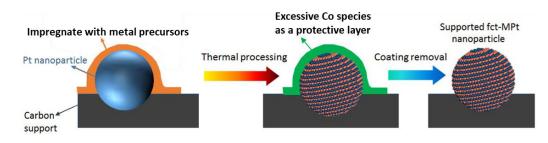
Q6 (3/31/2022) QPM: Demonstrate \geq S.O.A. at 0.8 V on hydrogen-air at 150 kPa, 100% RH, 80°C cell temperature after 90,000 catalyst AST cycles using an MEA with \leq 0.3 mg/cm² total PGM loading (comparison with S.O.A. at same loading). S.O.A is Umicore annealed Pt/HSC with 138 mA/cm² at 0.8 V after 90,000 AST cycles. (see slide #)

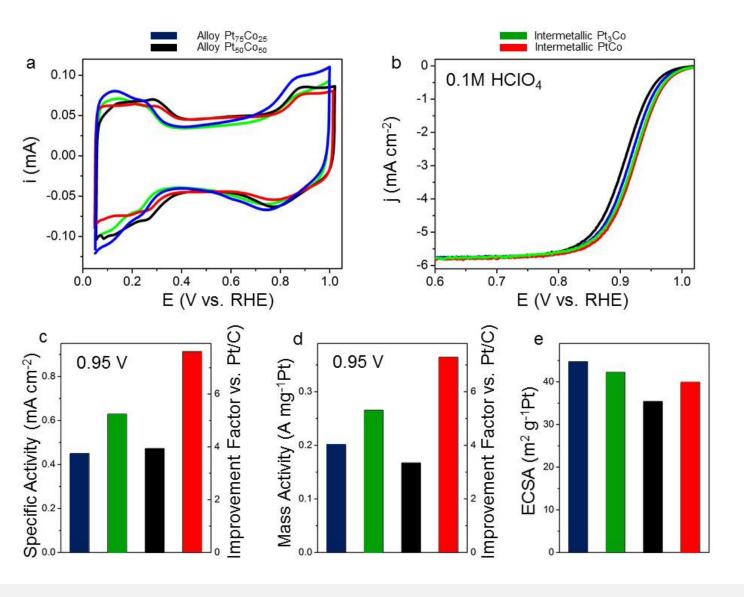



Approach: Structure Engineering of Pt Alloy Particles


Pt-based Intermetallic Particles

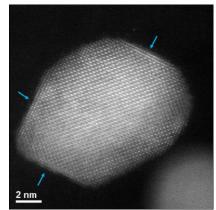
- Ordered structure mitigating base metal leaching
- Multi-monolayer Pt shell mitigating base metal leaching
- Strained Pt surface leading to high intrinsic activity

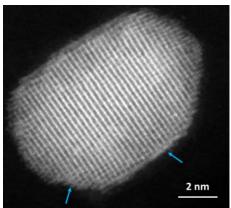

Further stabilizing base metal and straining Pt surface using nitrogen doping of Intermetallic Particles


Using a facile Pt intermetallic synthesis method: impregnation of Co into Pt/C

Using a facile nitriding method

- Nitriding a mixture of precursors and carbon by annealing in NH₃ gas
- Alloying Pt with Ni gives lattice contraction, while N-doping and structural ordering impart tensile strain → optimal contraction in Pt surface atoms

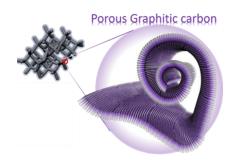

Accomplishment: Intermetallic Structure Increases Activity and Decreases Pt,Co Dissolution



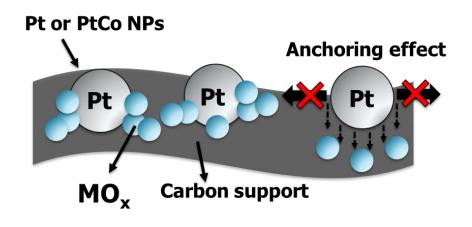
CELL TRUCK

	Pt dissolution*	Co dissolution*	Retained activity*	ECSA(CO):ECSA(H)
Pt ₇₅ Co ₂₅ A	0.37 μg L ⁻¹	4.0 μg L ⁻¹	53 %	1.10
Pt75Co25 IM	0.25 μg L ⁻¹	2.1 μg L ^{-1 **}	86 %	1.25
$Pt_{50}Co_{50}A$	0.36 µg L ⁻¹	14 μg L ⁻¹	48 %	1.02
PtCo IM	0.24 μg L ⁻¹	4.7 μg L ^{-1 **}	84 %	1.22

- A solid solution PtCo alloy;
- IM intermetallic structure
- * after 10,000 cycles
- ** the Co dissolution from preconditioned catalysts: 1.1 μ g L⁻¹ (Pt₇₅Co₂₅) and 1.2 μ g L⁻¹ (PtCo)



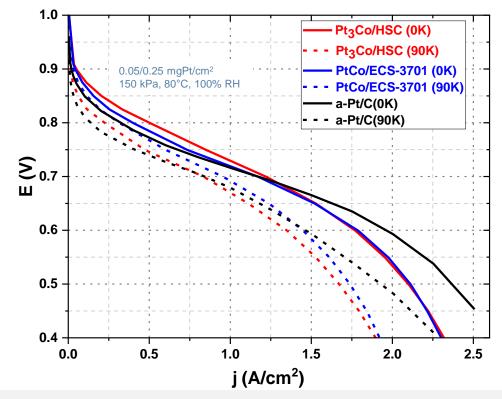
Approach: Structure Engineering of Supports

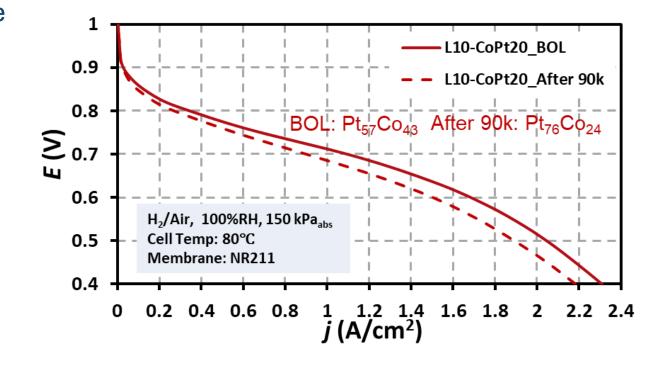

N-doped Porous Graphitic Carbon (NPGC) Support

Intermediate porosity balances particles protection and accessibility to oxygen
Nitrogen doping leads to an even distribution of ionomer on particles and within the catalyst layer

- Co-existence of mesopores and micropores in carbon support
- Pt particle deposition in mesopores
- Uniform doping of carbon with nitrogen
- High-pressure nitriding to increase N content

Co-Deposition of Oxide Particles and Pt Nanoparticles to Stabilize Pt





Accomplishments: PtCo Intermetallic Catalysts on Mesoporous Carbon

New PtCo intermetallic catalysts provide high performance and durability on various carbon supports

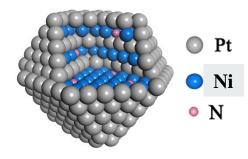
- Solid carbon (Vulcan XC-72)
- High surface area carbon (HSC)
- Mesoporous carbon (Pajarito ECS-3701)
- MOF-based carbon

Achieved <u>130% higher post-90K performance at 0.8 V</u> vs. Umicore annealed Pt/HSC, surpassing Go/No-Go

U.S. DEPARTMENT OF ENERGY

Accomplishments: Nitrided Intermetallic PtNi/C

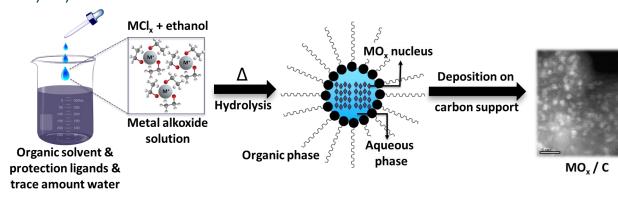
Intermetallic- & alloy-structured nitrogen-doped PtNiN/C


- ✓ Established facile one-step synthesis scalable \ge 1 g per batch
- ✓ Optimization of structure, particle size, Pt & Ni concentrations to improve ORR performance

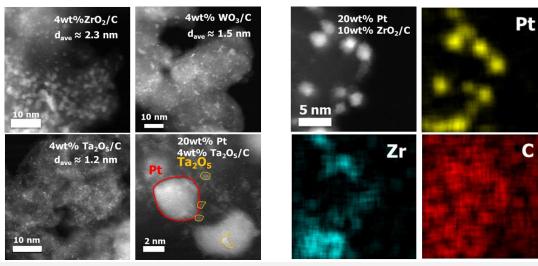
Comparison of PtNiN/C and benchmark performance of a-Pt/C

Catalysts	Number of	ECSA	МА	<i>j</i> at 0.7V	<i>j</i> at 0.8V
(particle size)	cycles	(m²/g _{Pt})	(mA/mg _{Pt})	(A/cm²)	(A/cm²)
SA-Int-PtNiN [§]	0K	53	550	1.22	0.50
BNL-C (4.5 nm)	90K	22	210	0.96	0.25
Int-PtNiN [¢]	0K	51	560	1.19	0.45
BNL-D (4.8 nm)	90K	25	246	0.95	0.27
a-Pt/C	0K	39	418	1.17	0.32
(4~5 nm)	90K	20	178	0.85	0.14

5 cm² differential cells, 150kPa, 100% RH, 80°C, 0.25 mg/cm² at cathode, 0.6-0.95V square wave SA-Int-PtNiN/C[§] is acid-washed Int-PtNiN/KB[¢] (the same batch)

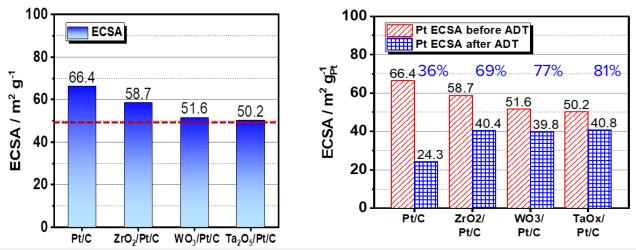

Intermetallic PtNiN

- Intermetallic PtNiN/C (Int-PtNiN, 4.8 nm) and acid-washed Intermetallic PtNiN/C (SA-Int-PtNiN, 4.5 nm) showed higher durability in 90K AST testing than reference a-Pt/C
- Post-mortem analysis showed particle growth and Ni leaching, indicating there are avenues for improvement of these already promising catalysts



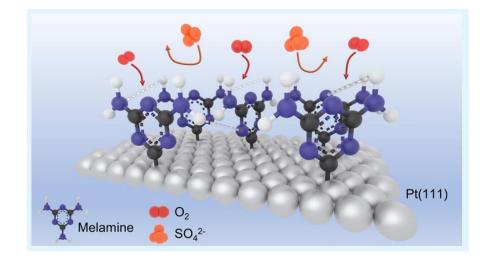
Accomplishments: Anchoring Catalyst Particles Using Metal Oxides

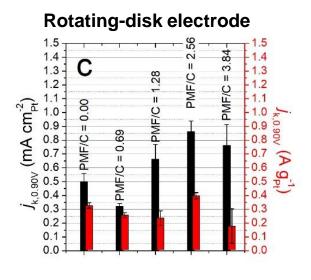
Zr, W, Ta oxides selected as the metal oxide candidates

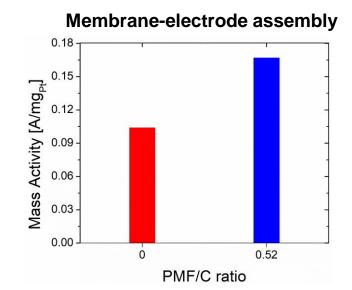

Uniformly dispersed <3 nm metal oxide nanoparticles by modified reverse microemulsion (RME) method

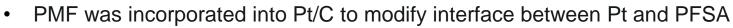
Chemical stability of metal oxide candidates screened

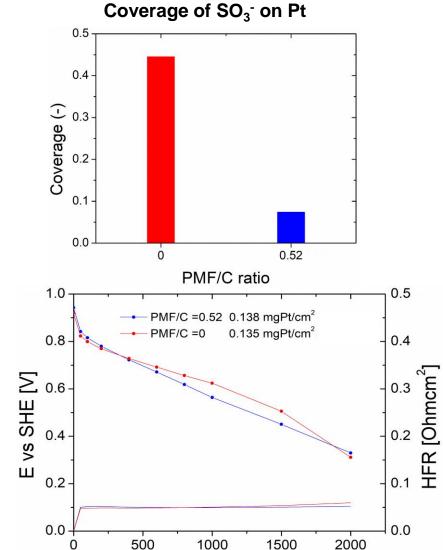
MOx	Dissolution after 10 h 90 °C 0.5 M H ₂ SO ₄
ZrO ₂	< 0.2% (total 3.8wt%)
WO ₃	< 1.1% (total 4.2wt%)
TaO _x	< 0.1% (total 3.7wt%)


• ECSA retention enhanced to over 80% by presence of MO_x nanoparticles in RDE measurements

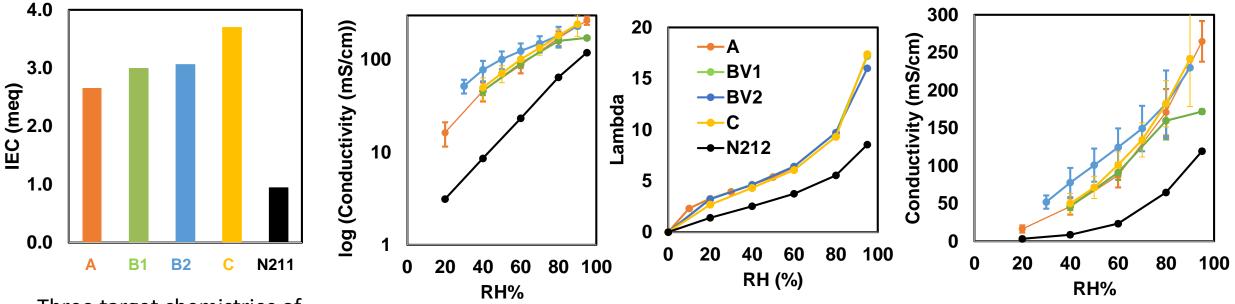

Approach: Modification of Catalyst-Ionomer Interface


- Introduce selected molecules into well-defined electrochemical interfaces with the thickness from a few Å (2D) towards nm scale (3D)
- Tailor properties of electrochemical double layer
- Form the interphase that enables control of charge transfer and adsorption of reactants and spectators (e.g., sulfonate)
- Selected molecules are spectators and do not have an active role in electrochemical processes
- Candidate modifier molecules: melamine and poly(melamine-co-formaldehyde) methylated (PMF)




Accomplishment: Poisoning of Pt Catalyst by PFSA Decreased using poly(melamine-coformaldehyde) methylated (PMF)

- PMF/C = 0.52 was selected as it was identified by RDE as optimal (Pt/PMF = 0.78)
- Hydrogen-air polarization curves shows better performance in kinetic and mass transport regions with PMF, but higher ohmic losses arising from cathode catalyst layer
- Increase in mass activity for MEA with PMF in cathode catalyst layer
- This is due to less poisoning by sulfonic acid groups
- SO₃ coverage on Pt is reduced from 0.45 to less than 0.1

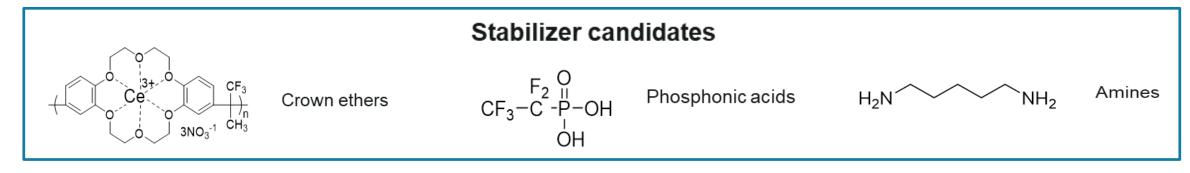


Approach: Development of Novel Perfluoro Ionomers/Membranes

- Fuel cell electrolytes have been limited to a narrow range of perfluorinated sulfonic acid (PFSA) copolymers. While current PFSAs exhibit high durability and conductivity, they still have performance and durability limitations, particularly at high T and low RH.
- Novel perfluorinated polymers offer the potential to improve lifetimes, performance and durability through advances in conductivity, durability and catalyst interactions by exploring novel chemistries with super acids at extreme local concentrations
- Ultimate goal is improved conductivity and selectivity (conductivity/hydrogen permeability) to improve high temperature/low RH performance and to improve electrocatalyst/ionomer interactions.
- Using novel ionomer chemistry, advantageous for crosslinking and grafting approaches and for:
 - decoupling mechanical/transport properties
 - restraining water uptake for decreased swell
 - increasing selectivity
 - limiting polymer mobility at catalyst
 - reaching extreme local acid concentrations

Accomplishments: High Ion-Exchange Capacity (IEC) Ionomers Synthesized and Evaluated

Three target chemistries of focus have been synthesized and characterized for IEC, conductivity and water uptake.

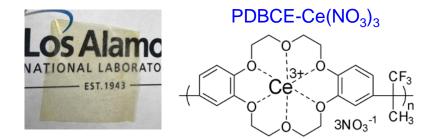

All novel ionomers have demonstrated a 5-10x conductivity improvement over Nafion 211.

Higher lambda values at lower RH suggest increased water affinity of these novel polymers compared to Nafion. Water uptake per acid site identical across chemistries explored.

Polymers synthesized to date lack water robustness under high RH and liquid water exposure.

Approach: Low Molecular Weight Oligomeric Electrode and Membrane Ionomers

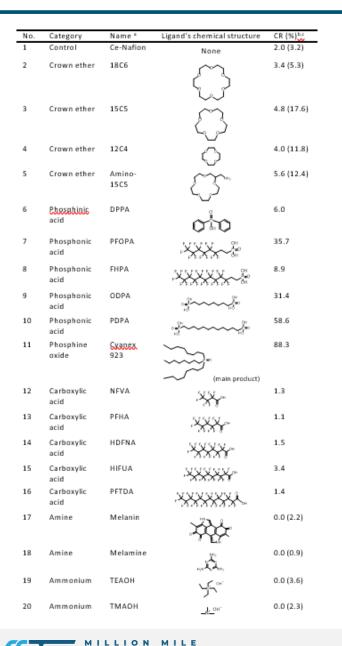
- Development of oligomers to be used as membrane additives or electrode binders.
- Functional structure targeting improving:
 - h Radical scavenger immobilization
 - Solution Solution
 - Section Se
- Optimization of membrane and electrode processing towards:
 - h Higher mechanical toughness of PEMs
 - h Uniform distribution of ionomer and catalyst nanoparticles in the electrodes
 - h Enhanced morphological stability
 - ₲ Formation of ideal three-phase interface



Accomplishment: Radical Scavenger Immobilization

- Successfully synthesized 18-crown-6 functionalized polymer, complexed Ce⁺³; TGA indicates the composite polymer contained 38% Ce(NO₃)₃ (1:1 ratio: 42%).
- Successfully synthesized wholly perfluorinated phosphonic acids for increased compatibility with PFSAs versus commercial perfluorooctanephosphonic acid (PFOPA)
- The synthesized C8 and C10 phosphonic acids showed superior properties over crown ether or commercial PFOPA.
- Effect of oligomer additives on catalyst activity is being investigated.

Properties	PFOPA	PDBCE	C8
Cerium Retention (%)	89.6	5	70.2
FER (mg _F /g _{Nafion} h)	0.26	0.42	0.20
Nafion conductivity (S m ⁻¹)	15	18	20
Compatibility	Hazy	Clear	Clear
Catalyst poisoning	?	?	?



Perfluorinated Phosphonic acids Synthesized

Ligand name	Chemical structure	CR(%)
C4	F F F OH F F F F OH F F F F OH	2.9
C6	FFFFFOH FFFFFOH	4.6
C8	FFFFFFFOH FFFFFFFOH	70.2
C10	FFFFFFFFFOH FFFFFFFFFOH	71.9
C4DPA	OHFFFFOH OHFFFFOH	4.4
* PA to Ce ratio = 6 CR = cerium retention		

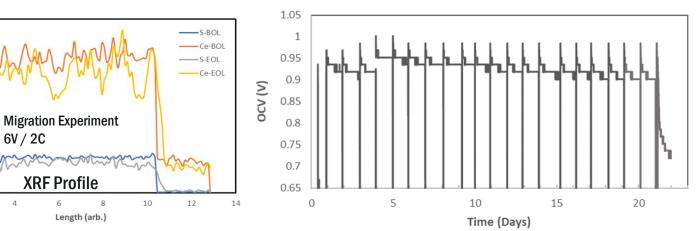
Stabilization of Cerium in Membranes

LION

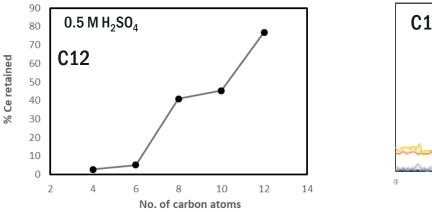
FUEL CELL TRUCK

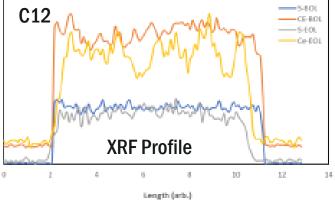
Results

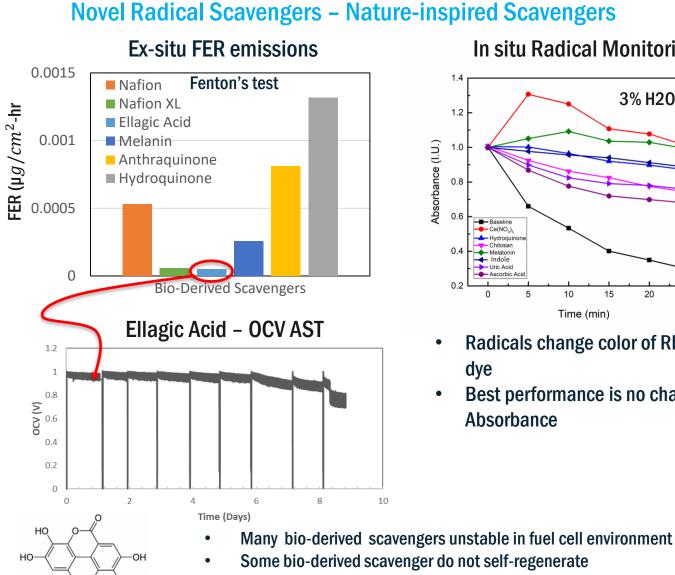
0


2

6V / 2C


4


6


Phosphonic Acid Stabilization of Ce

Both CREs and phosphonic acid show promise as Ce stabilizers

Radical Scavengers (non-Ce based)

1.4

1.2

0.8

0.6

0.4

0 3

•

-Baseline

- Hydroquin Chitosan

Melatonin

10

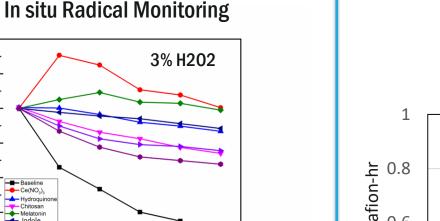
Time (min)

15

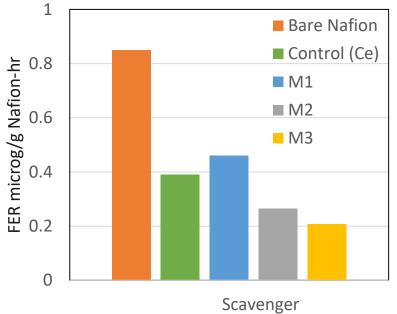
Radicals change color of Rhodamine

Best performance is no change in

20


25

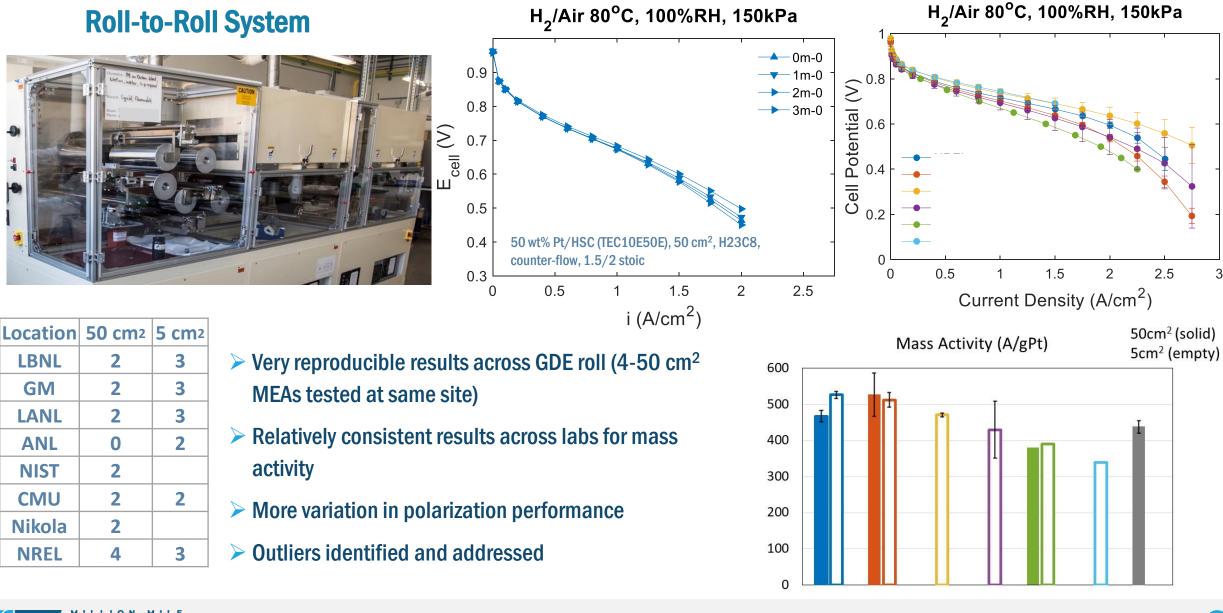
Indole Uric Acic


dye

Absorbance

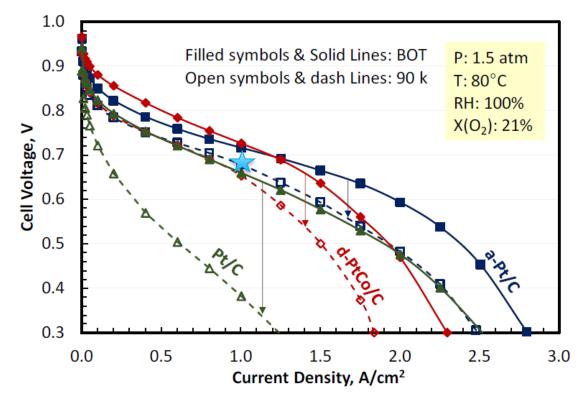
Absorbance (I.U.)

Novel Radical Scavengers – **Synthesized**


Invention disclosure filed; patent in process

Benchmarking and Baselining

Common R2R MEA Testing


Baseline Performance for Catalyst Down Selection

- Materials chosen to contrast mean particle size and alloying
- 90k cycles from 0.6 to 0.95 V

Supplier	Umicore	Umicore	ТКК
Catalyst	Elyst Pt50 0690 (PtCo)	Elyst Pt50 0550	TEC10E50E
Carbon Support	HSA	HSA	HSA
Support BET [m²/g]	780-800	780-800	800
Pt/Co ratio [mol/mol]	2.2 – 3.0		
Mean Pt Crystallite size [nm]	^a 4.4 - 5.4	^a 5.1 - 5.7	^c 2.4 - ^b 2.6
Catalyst BET [m²/g]	240 - 280	310 – 350	300
ECSA [m²/g _{Pt}]	40-45	45-50	72-77

Baselining MEA Performance and Durability in Differential Cells

	Number of	ECSA	MA	PD at 0.7 V		PD at 0.8 V	
	Cycles	m²/g _{Pt}	mA/mg _{Pt}	mW/cm ²	kW/g _{Pt}	mW/cm ²	kW/g _{Pt}
D+/C	0k	65	651	519	1.70	144	0.47
Pt/C	90k	20	73	94	0.31	20	0.07
a Dt/C	0k	39	418	818	2.60	253	0.80
a-Pt/C	90k	20	178	594	1.89	110	0.35
d-PtCo/C	0k	34	824	829	2.59	403	1.26
u-PiCO/C	90k	16	152	526	1.64	125	0.39

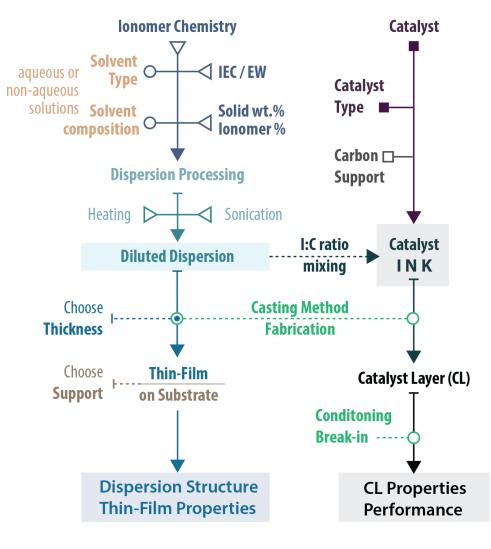
US. DEPARTMENT OF ENERGY

Data given to analysis team

EOT integral cell target 749 mW/cm²

Multicomponent Integration

Relevance to FY22 M2FCT Milestones


Q3 - Characterization of lonomer adsorption

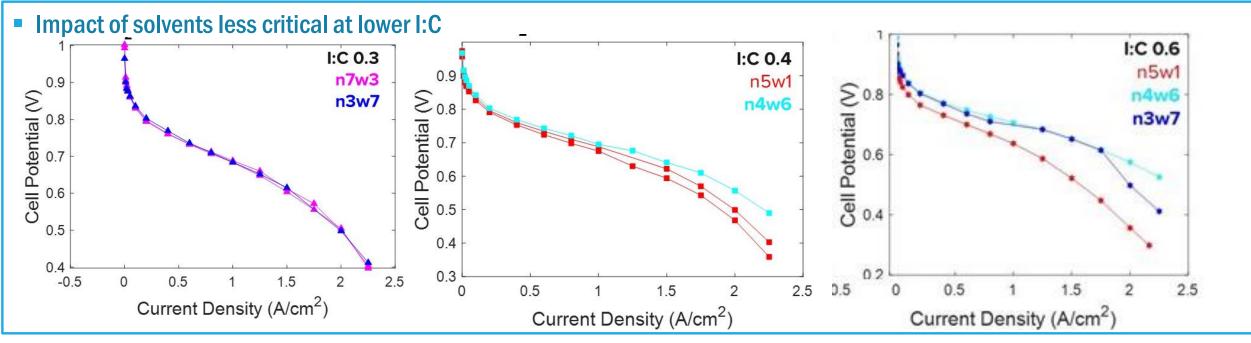
 Measurement of ionomer adsorption and binding energy (GIXS/QCM/ITC) and characterization of the size and shape of aggregated catalyst clusters in catalyst inks (USAXS/SAXS) and correlation with catalyst-layer structure, coverages, and performance. (LANL, LBNL, ANL, NREL)

Q4 – MEA Fabrication

- Demonstrate at least 10% improvement in current density at 0.7 V over baseline materials by varying MEA fabrication method, solvent ratio in catalyst-ionomer ink, ionomer type and content, etc. Total PGM loading constrained to 0.4 mg/cm2 or lower. MEA test conditions: 88°C, 2.5 atm, SR: 1.5 cathode/2 anode, 40% RH inlet, simulated integral cell. (All)
- <u>Overall</u> Cell demonstrated 2.5 kW/g_{PGM} power (1.07 A/cm² current density) at 0.7 V after 25,000 hour-equivalent accelerated durability test.

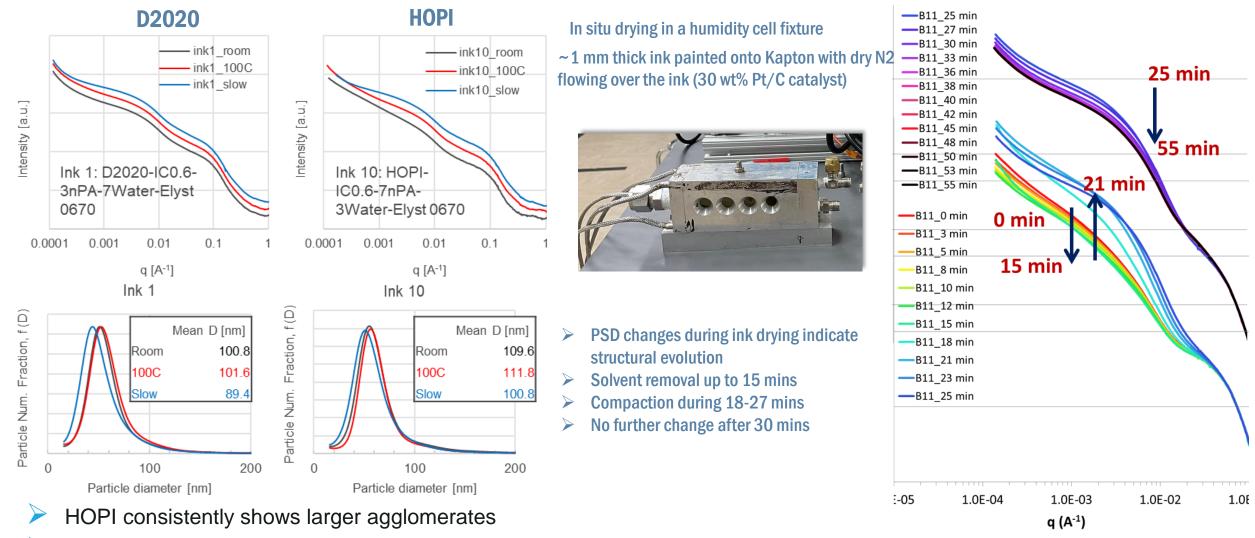
Ionomers & Catalysts | Thin Films | Catalyst Layer Structure-Property-Performance Correlations





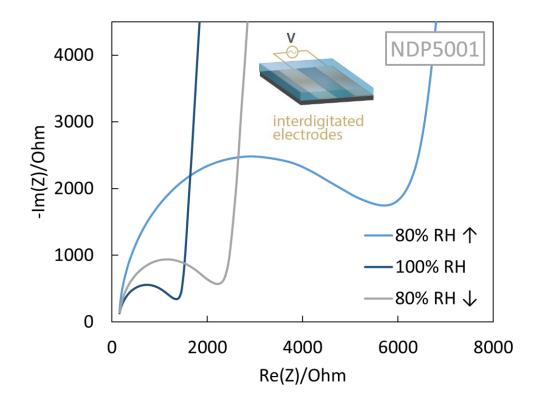
Accomplishments

Motivation

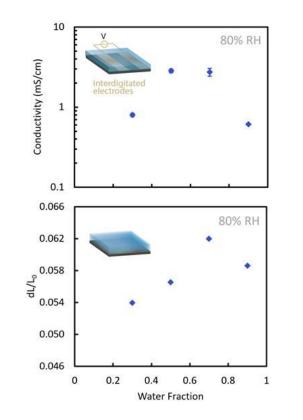

Extend prior work on electrocatalyst interfaces to lower I:C and chemistries

Pt/Vu D2020 - H₂/Air 90°C 40% RH 250 kPa

Impact of Ionomer, Solvent, and Solvent Removal Rate on Electrode Structure

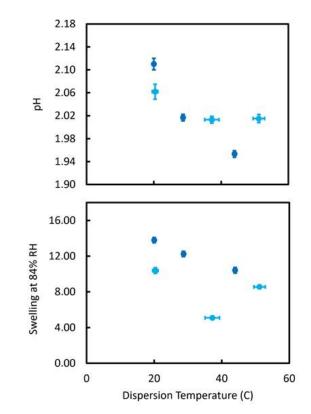

- Slow drying results in smaller agglomerates for both D2020 and HOPI inks
- MEA performance tests are on-going.

MILLION MILE

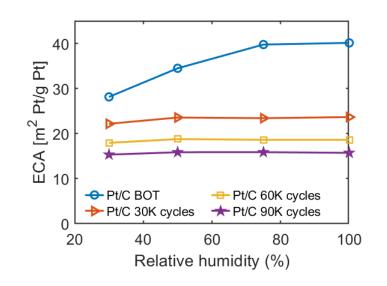

Ionomer Thin Film Characterization

Electrochemical Impedance for Thin Films

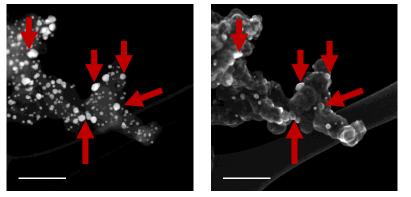
- Ionomer films on inter-digitated substrates
- Conductivity in controlled environment

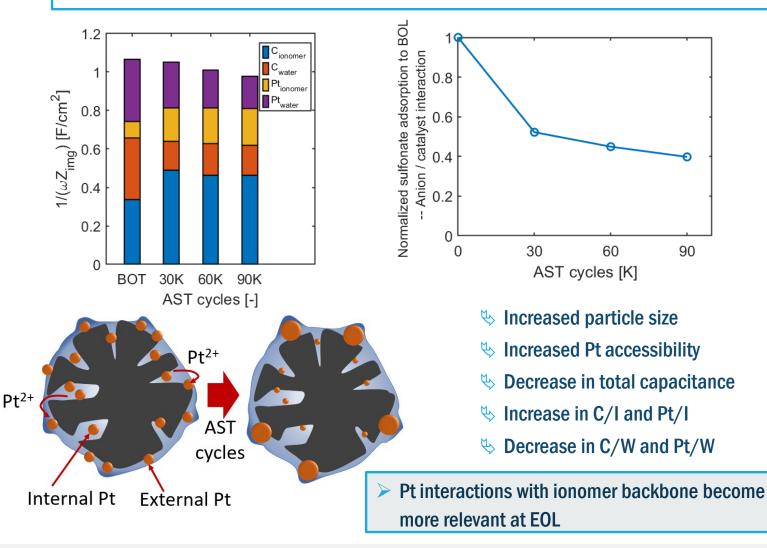


Effect of Solvent Composition: on Swelling and Conductivity

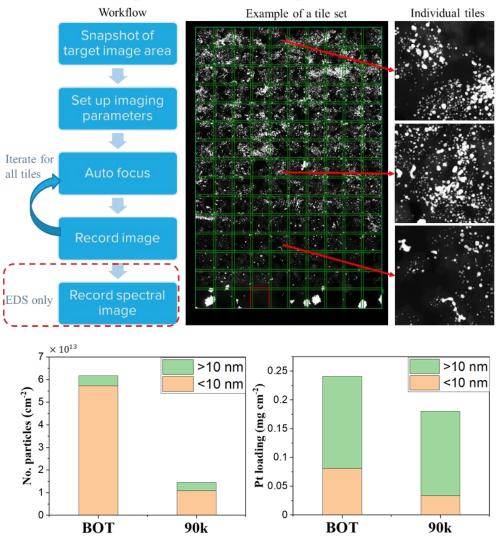

Processing Nafion Ionomers

Effect of Dispersion Temperature: on pH and Swelling of cast-films

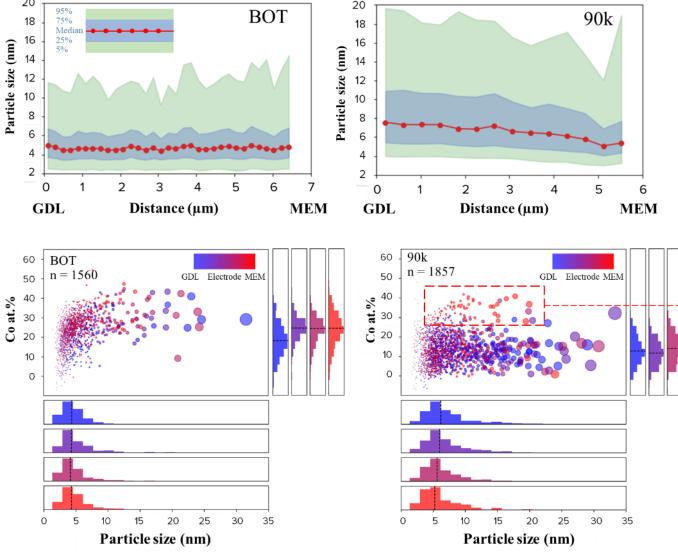



Accomplishments

*From Cullen & Yu



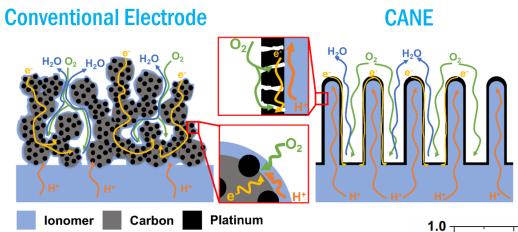
- Objectives
 - Series benchmark performance for subsequent materials down selection
 - ✤ Inform systems analysis efforts
 - **Examine evolving interfaces and structures**



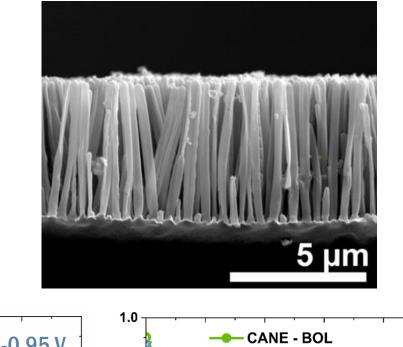
Accomplishments | Automated Electron Microscopy

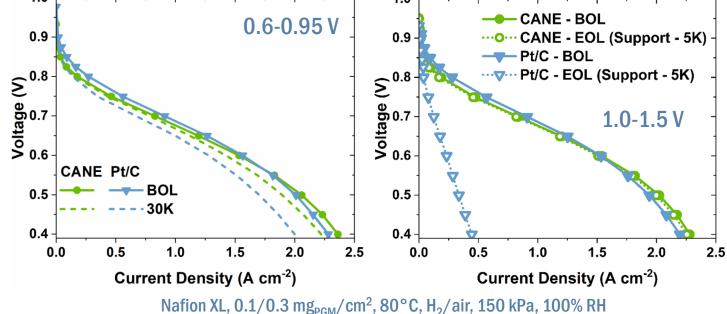
20

Implemented automated electron microscopy workflow for

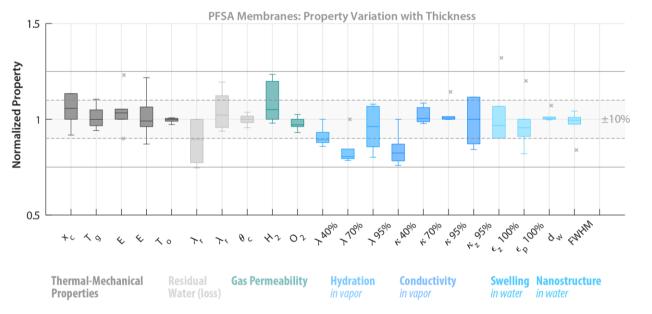

Able to identify regions of more significant particle growth and Co loss

particle size analysis

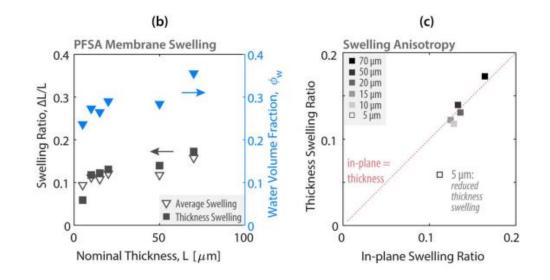

 \succ


Coaxial Nanowire Electrode (CANE)

 CANE provides BOL performance similar to Pt/Vulcan, but higher durability on catalyst and support ASTs


Manufacturing

Accomplishments | Membrane Studies & Database


Membrane Properties: Effect of Thickness

Thickness-dependent property map established for PFSA membranes

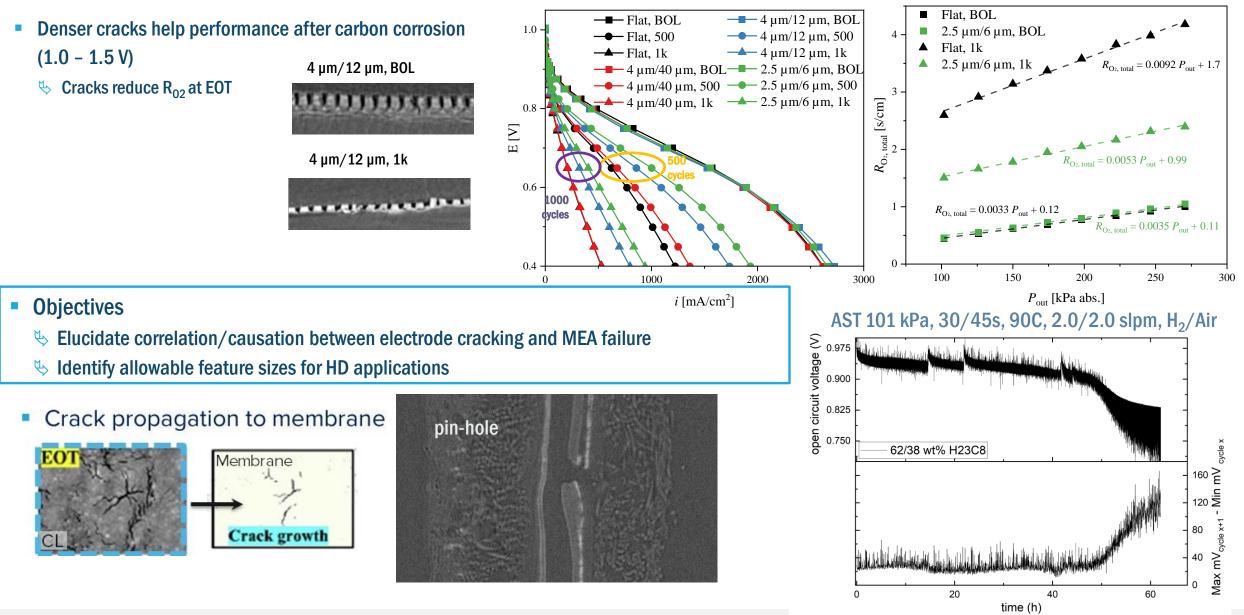
- > Anisotropy for membranes dispersion-cast < 10 μ m
- Implications for thin reinforced membranes and for durability where RH cycling is pronounced

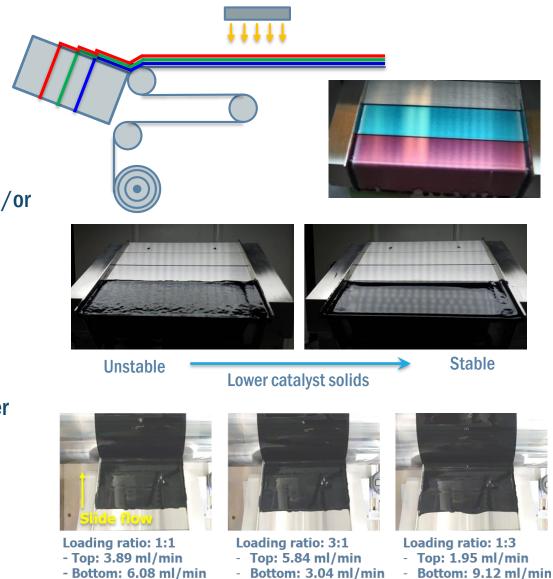
Integration & Manufacturing-Scaling Science

Scaling Science for Ink and Electrode Development

Scaling science activities to support Clean H2 Manufacturing in the BIL related to manufacturing

Mayer Rod


Slot-die Coater


Effect of cracks on electrode durability

Multilayer structures for electrode optimization – Slide Die

- Graded electrode structures could be beneficial to performance and durability
 - \backsim Control of properties at interfaces with membrane and GDL
 - Influence local transport and electrochemistry via different catalysts and/or ionomers
 - **Solution** Sector Secto
- Results
 - ♥ Multilayer slide die set up and validated
 - Completed modifications to R2R line
 - Setablished key process window parameters: impact of ink rheology, layer flowrates and thickness, die gap, line speed
 - $\circ~$ Coordination with Sandia for flow modeling, via R2R Consortium
 - **Solution** Solution Cost of the second structure of th
 - \circ Pt/HSC / Pt/Vu 2-layer decals
 - Coordinated with ORNL for dual slot comparison, microscopy

International Durability Working Group (i-DWG)

https://millionmilefuelcelltruck.org/idwg

International Durability Working Group (iDWG)

8 Countries

from America, Europe, and Asia

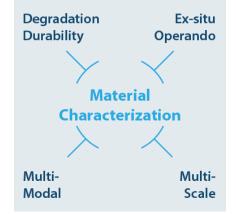
30 Institutions

participants representing governments, universities, industry and labs

80 Researchers

facilitating data sharing, exchanging materials, promoting AST developm<u>ent</u>

with representation from the US, European Union (EU), Japan, and Korea to better coordinate international efforts currently underway to help commercialize fuel cells for trucks and heavy-duty applications.


International Durability Working Group (i-DWG)

with representation from the US, European Union (EU), Japan and Korea to better coordinate international efforts currently underway to help commercialize fuel cells for trucks and heavy-duty applications.

M2FCT (funded by US DOE) EU's IMMORTAL (by FCH 2 JU) Japan's FC-Platform (by NEDO) CEA-Grenoble (Embassy fellows) Over 80 researchers with access to resources hosted by M2FCT ensure all relevant stressors are taken into account while developing heavy-duty ASTs leverage the characterization tools and capabilities available to the various International groups to advance understanding of PEMFC performance and durability. explore MEA testing at various scales to better understand the scaling of performance and durability from small differential cells to operating stacks

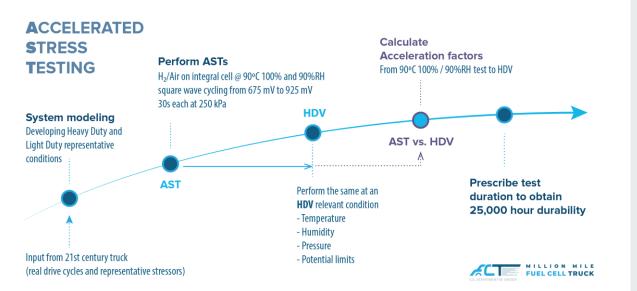
OUTREACH International Durability Working group (I-DWG)

N. American AST Working Group

Define the 25,000 hour equivalent AST in the M2FCT 2025 Target

- Recommend protocols and targets related to heavy duty application of fuel cells
- ASTs for use in M2FCT for target evaluations (targets are End-of-Life)
- Accelerated Stress Tests (ASTs) to be developed

Scatalyst

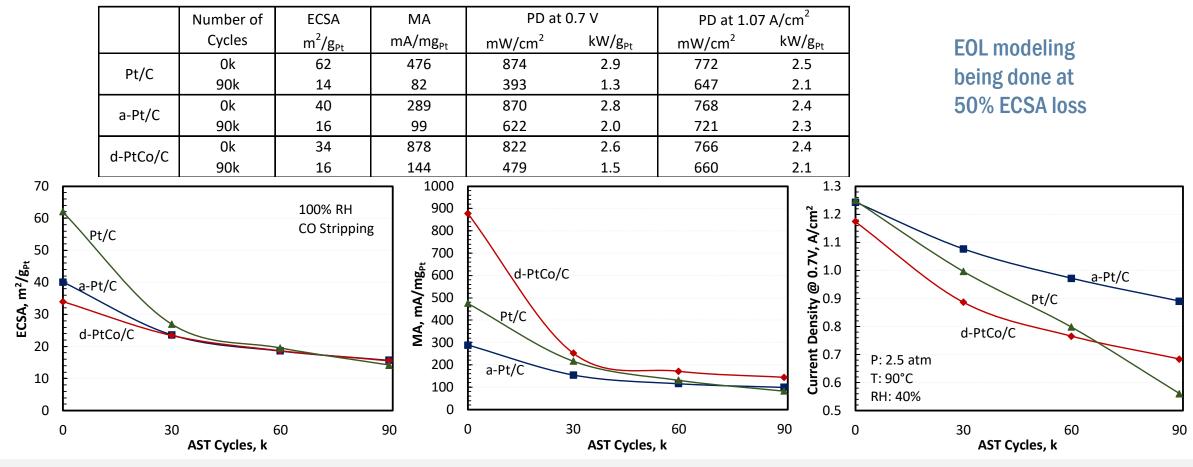

Scatalyst support

- **Membrane chemical**
- **Solution** Sector Membrane chemical-mechanical

♦ SD/SU

School H2 starvation

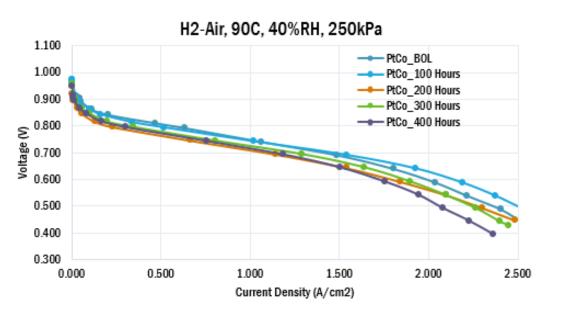
Solution MEA drive-cycle

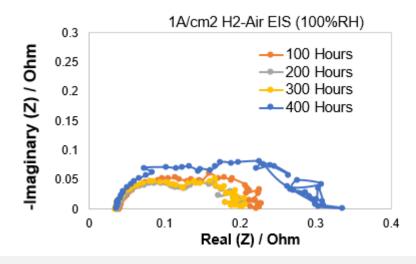

Participants 3M ANL Ballard **Carnegie Mellon Chemours** Cummins DOE GM LANL LBNL Nikola NREL ORNL **Plug Power** W.L. Gore

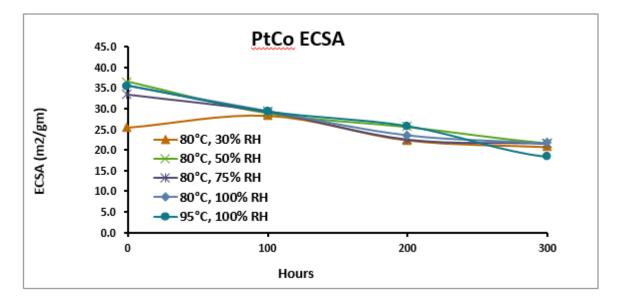
2.5 kW/g_{PGM} power (1.07 A/cm² current density) at 0.7 V after 25,000 hour-equivalent accelerated durability test

Baseline durability – Integral cells

Lab call and M2FCT Target


- 2.5 kW/g_{PGM} at 0.7 V (1.07 A/cm² current density) after 25,000-h equivalent accelerated stress testing
- 750 mW/cm² power density for 0.3 mg/cm² total Pt loading, 1.5/2 c/a stoic, 2.5 atm, 88°C, 40% RH, integral cell conditions
 M²FCT FY2021 Q4 Milestone
- AST defined as 0.6 V 0.95 V square wave with 0.5 s ramp and 2.5 s hold in H₂/N₂ at 80°C and 100% RH, 90k cycles
- Integral Cell Conditions for Pol Curves: 1.5(c)/2(a), 2.5 atm, 90°C, 40% RH

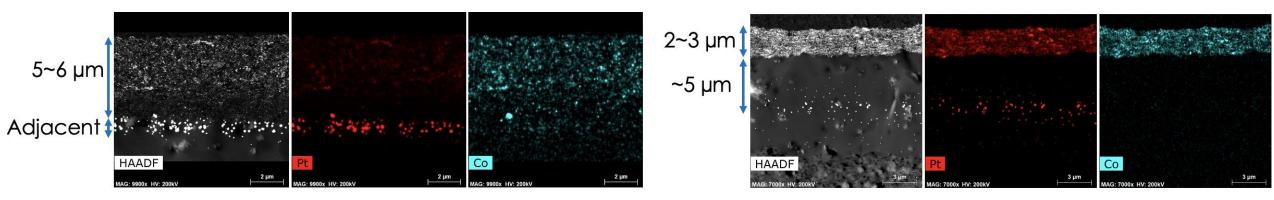



FUEL CELL TRUCK

H₂/Air MEA AST

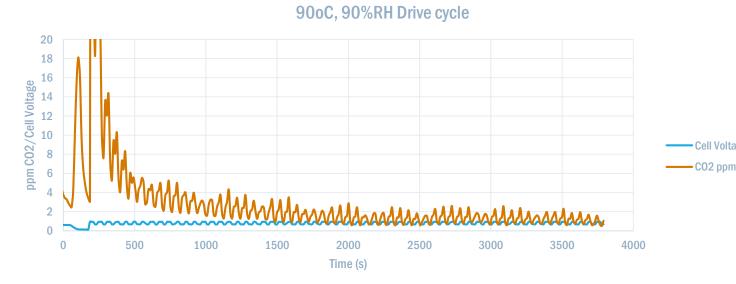
Cycle from 0.675 (30s) to 0.925V (30S)

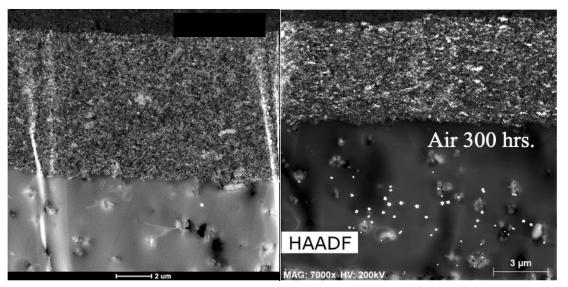
- Similar ECSA loss for H_2 /Air and H_2/N_2 tests
 - BOT = $40m^2/gm$ for Pt/C and 35 m²/gm for PtCo/C
 - EOT $\approx 15 \text{ m}^2/\text{gm}$ after 90K H₂/N₂ cycles at 80°C or 500 hours of H₂/Air cycles (30,000 cycles) at 90 °C
- Similar kinetic performance losses seen in H_2/N_2 and H_2/Air tests
- Mass transport losses observed in H2/Air tests


Compare H₂/Air and H₂/N₂ ASTs

AST in N2, 80 °C, 0.6V to 0.95V, 90k cycles

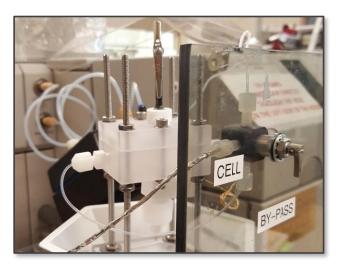
	Co at.%	Pt loss%
Map1	13.0	36.7
Map2	12.6	34.2
Мар3	13.9	37.9
Average	13.2±0.5	36.3±1.5


AST in Air 300 hrs. 90 °C, 90%RH, 0.675 to 0.925V

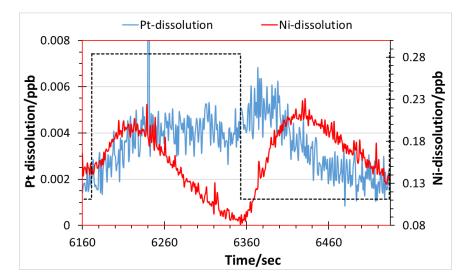

	Co at.%	Pt loss%*
Map1	21.3	12.1
Map2	21.8	15.8
Мар3	21.6	10.7
Average	21.6±0.2	12.9±2.2

- Slower Co dissolution and lower mass activity decay in H₂/Air AST
- Pt depletion layer in H_2/N_2 tests (not observed in H_2/Air tests)
- Pt band further in the membrane for H₂/Air AST

Carbon Corrosion and Membrane Degradation During H₂/Air AST

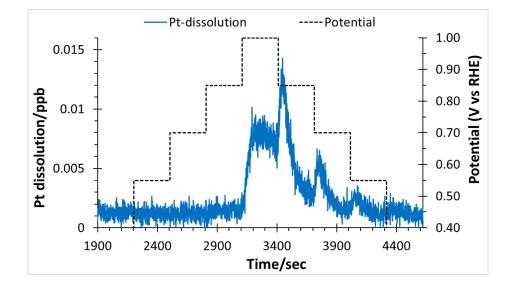

- Significant carbon corrosion observed during H₂/Air AST testing
- Drops dramatically over time (not all carbon the same, easily accessible carbon corrodes first)
- Parametric study under way

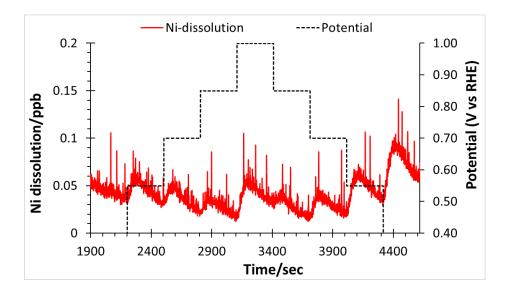
- Fluoride emission rates during H_2 /Air AST at 90°C \approx 3.5 µg/cm².hr for N211
- For Nafion HP membranes the rate increase from ≈ 0.2 to 2 $\,\mu g/cm^2.hr$ over the 500 hours of testing
- Need to evaluate advanced membranes (NC700)
- Also performing parametric study with GM supplied MEAs



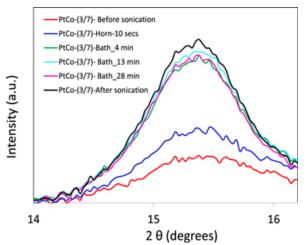
Understanding Catalyst Degradation using Online ICP-MS

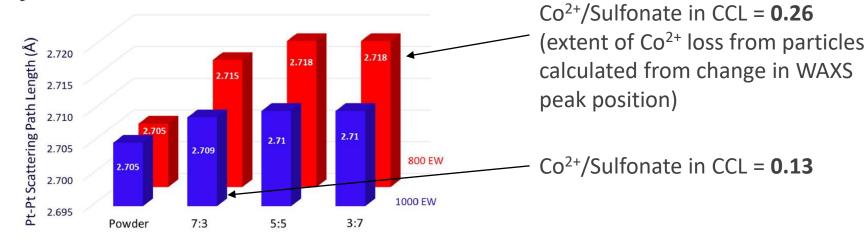
Pt and Ni dissolution from 30 wt% PtNi/HSC


Electrode loading: 4 μg -Pt/cm² Electrolyte: Ambient 0.1 M HClO_4 Square wave: 0.4 V and 0.95 V, 3 min each

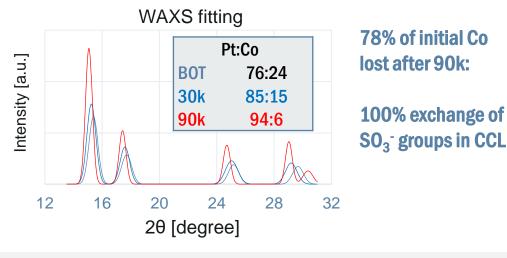


CELL TRUCK


 Ni dissolution rate 40x Pt dissolution rate


- Pt and Ni dissolution increase after potential transitions
- Pt dissolution stabilizes while Ni dissolution passivates
- Initial studies of BNL nitride PtNi show comparable results

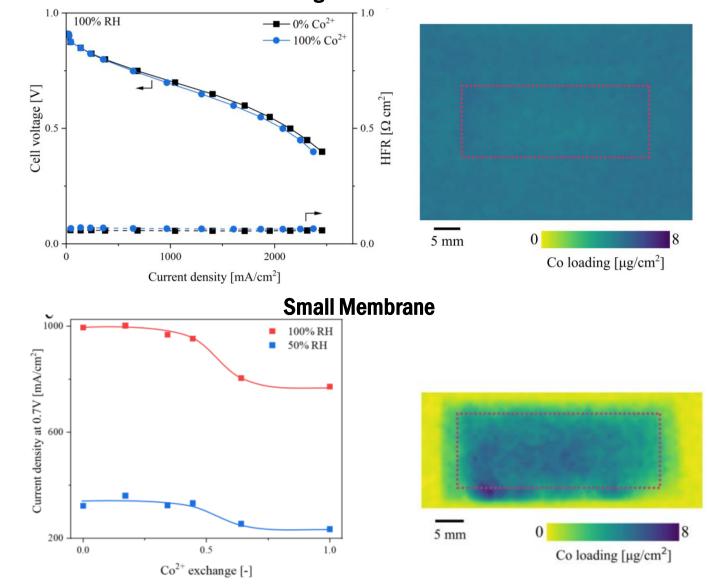
Degradation of Platinum-Cobalt Alloy Cathode Catalysts



Umicore Elyst Pt30 0670

n-Propanol to Water Weight Ratio

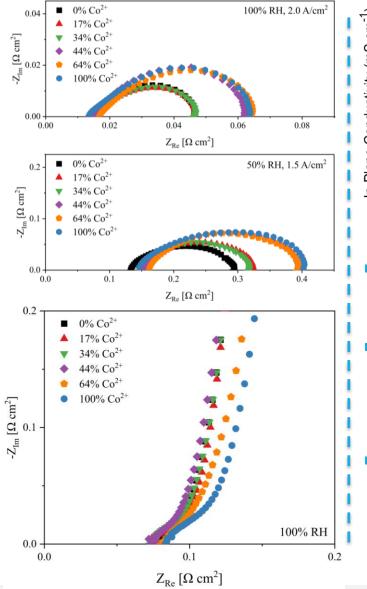
Umicore Elyst Pt50 0690 AST Cycling for 30k and 90k

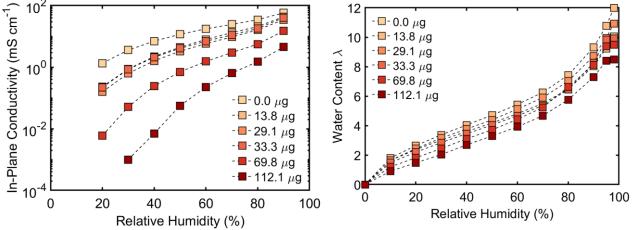


FY'21 Q3 Milestone: Define acceptable transition metal loss from alloy catalysts (% of sulfonic acid sites in ionomer layer) with respect to electrode layer losses.

- Umicore Elyst Pt50 0550 0.25mg_{Pt}/cm², 2cm x 2cm
- Ink: D2020, 0.06 g catalyst, 16.6 g H₂O:NPA (4/3 v/v), I/C=0.9
- Soak Pt/C decals in Co²⁺/HNO₃ solutions (0.15 M HNO₃)
- Measured Pt and Co content using XRF
- Prepare CCMs from these decals and measure H₂/Air performance as a function of RH, diagnostics

Effects of Co²⁺ Concentration in Electrode on Performance

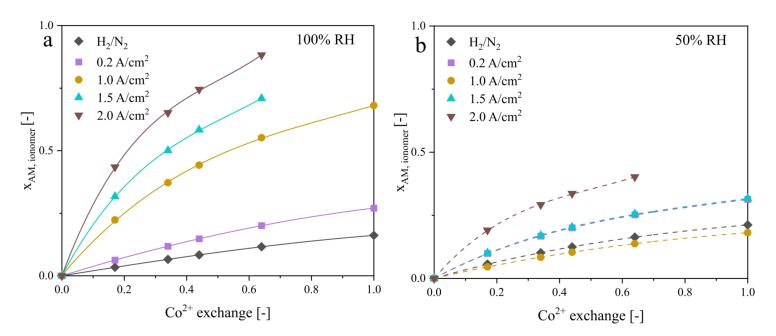

- Co²⁺ was doped into a decal electrode.
- Reduction in inactive membrane area led to stronger Co²⁺ effects
 - ♦ Inactive membrane area acts as Co²⁺ sink
- Co²⁺ exchange fraction and performance showed a sigmoidal behavior.
- Co²⁺ was also doped in membranes with the same total Co²⁺ amount in the MEA.
 - The performance was the same as the electrodedoped MEA.
 - ♦ Co²⁺ content in the active area governs the performance loss.
- A thicker membrane (N212) suppressed effects of Co²⁺ doping.



Large Membrane

Co²⁺ Effects on Proton and Oxygen Transport

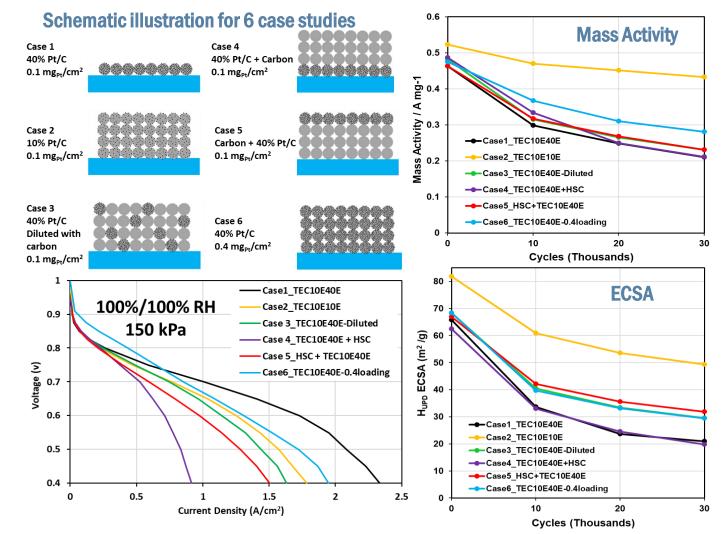
- R_{MT} increased with increasing Co²⁺ doping.
 - The volume of hydrophilic domain in the ionomer reduces, resulting in lower
 O₂ permeability.
- Sheet resistance increased with increasing Co²⁺ doping.
 - Co²⁺ ion-exchanging with sulfonic acid sites lead to poor proton transport.



- LBNL performed ex situ measurements on membranes provided by LANL to study Co²⁺ effects on λ and conductivity.
- Conductivity decreased with initial Co²⁺ doping, but plateaued between 13 and 33 µg/cm². Then, conductivity decreased with increased Co²⁺.
- Water uptake decreased monotonically with Co²⁺.

Partitioning of Co²⁺ Between Membrane and Electrode

- Combining LANL's impedance results and LBNL's λ and conductivity measurements, ANL modelled [Co²⁺] across the MEA
 - Different x_{AM} trends at 50%RH, due to *i* affecting ionomer λ, subsequently affecting Co²⁺ mobility and flux from membrane.
- Co²⁺ effect on kinetic resistance was negligible.
- At 100%RH, R_{MT} increases when 1.0 \rightarrow 1.5 A/cm² due to flooding
- At 50%RH, R_{MT} decreases with increasing *i* due to higher ionomer λ.

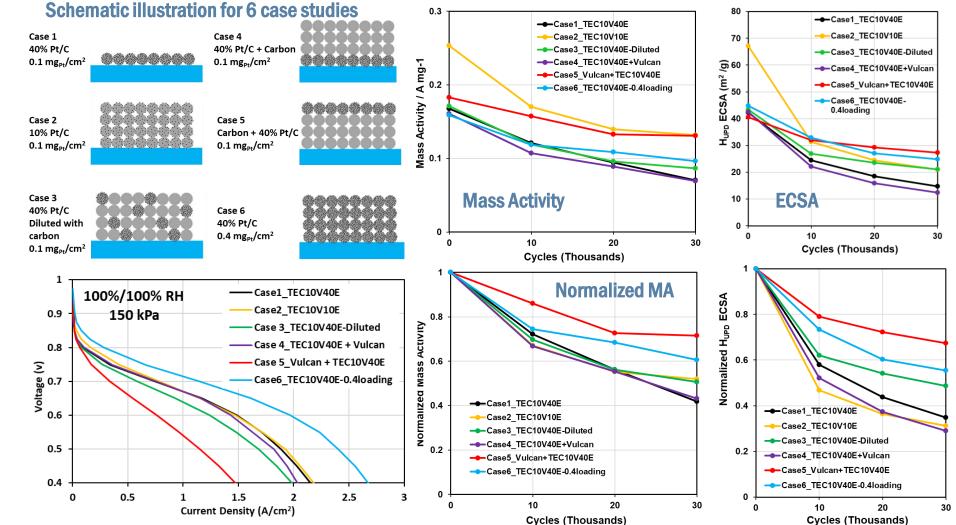

Conclusions

- ~ 45% of Co^{2+} exchange of the ionomer can be tolerated in the electrode
- Loss in performance is predominantly induced by mass transport losses and proton transport losses,
- Co²⁺ preferentially resides in the electrode under wet operating conditions

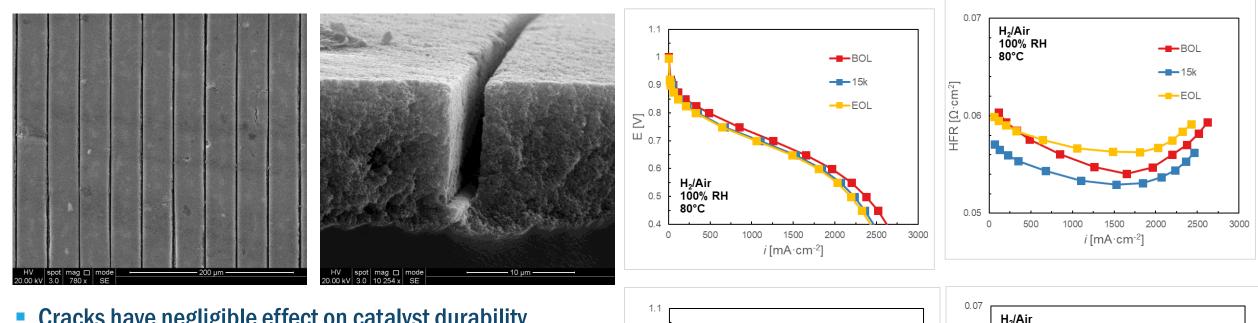
This defines the catalyst alloying element loss allowed in catalyst development projects - not related to changing kinetics

Effect of Electrode Thickness and Pt Distribution (HSC)

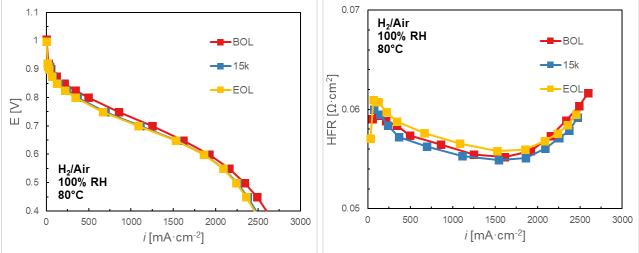
- Model electrode case studies guide our design of HDV MEAs <u>with increased efficiency and</u> <u>durability</u>, including studies on effect of electrode thickness, local Pt distribution, ionomer, and carbon support properties
- For Pt/HSC
 - Increasing electrode thickness dramatically decreased cell performance
 - Local concentration of Pt affects durability
 - Selection of Pt wt% is a balance between durability (lower wt% better) and transport (higher wt% better)



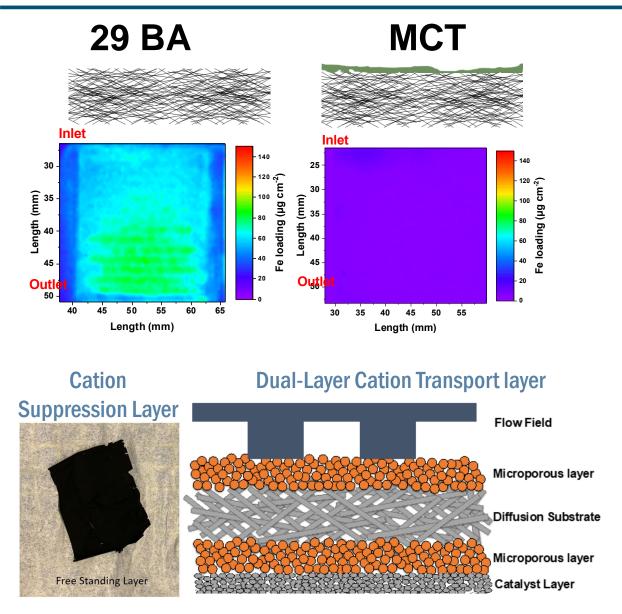
Cell performance is limited by higher mass transport resistance in thicker electrodes

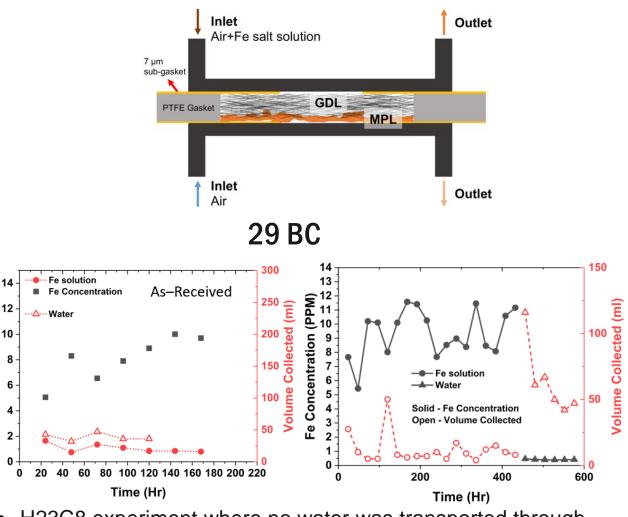

Effect of Electrode Thickness and Pt Distribution (Vulcan)

- For Pt/Vulcan
 - Durability of Pt/Vulcan shows
 no obvious trend with Pt local
 concentration
 - Selection of Pt wt% is more flexible, since it is less sensitive to flooding
- Improved understanding of how catalyst and electrode properties control electrode behavior enables design of improved HDV MEAs



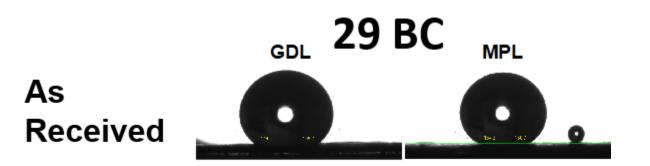
Catalyst located far away from membrane shows better durability

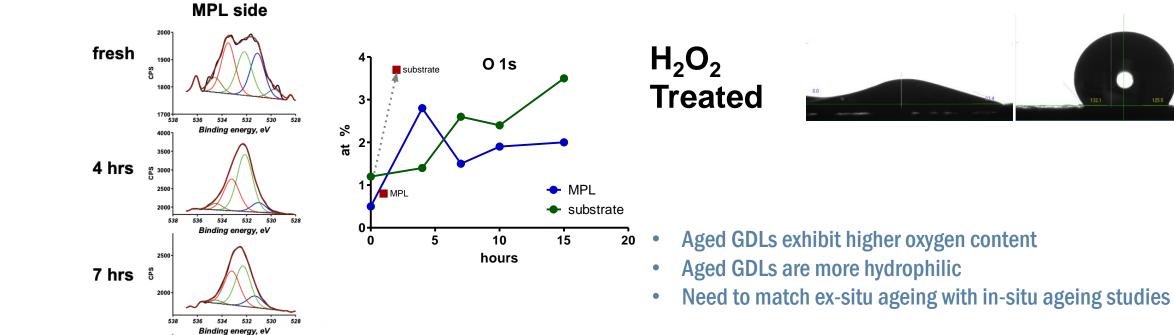

Effect of Cracks/Grooves on Electrode Durability



- Cracks have negligible effect on catalyst durability
- ECSA, mass activity, and transport losses are similar with and without cracks
- Dense grooves improve performance of un optimized electrodes
 - **Shick electrodes**
 - Solution High I/C ratio electrode
 - Selectrodes subjected to carbon corrosion

Fe Transport Rates Across GDL/MPL


- H23C8 experiment where no water was transported through
- No crack in the MPL has a higher water break through pressure


Fe Concentration (PPM)

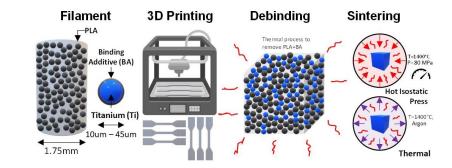
Development of GDL AST

GDLs

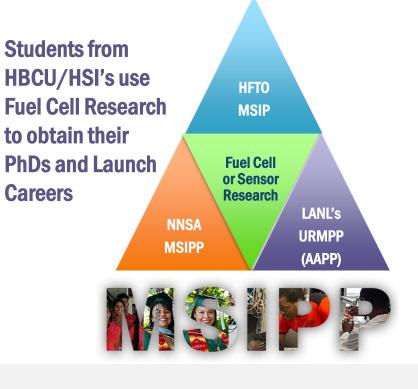
 Chemical Ageing – peroxide: 30% H₂O₂
 Chemical Ageing – peroxide: 3% H₂O₂ Sometimes refluxed at 80C
 Submersion in H₂O (with N₂, H₂ or Air)
 Potential Cycling (1 to 1.5), 80 °C, 200%RH

Collaborations: Non-FOA activities

Entity	Scope of collaboration	Entity	Scope of collaboration	
AvCarb	R2R gas diffusion electrode fabrication	SUNY Buffalo Catalyst carbon supports		
3M	lonomer materials and discussions for ionomer studies	Advent	Advent Membrane development	
N.E. Chemcat	Development of Pt core-shell catalysts	U. South Carolina Catalyst development		
Toyota North America	Development of catalysts for light-duty vehicles	U. Louisville	Electrode structures	
Ιυρυι	Development of PBI-modified carbon	Georgia Tech	Lattice Boltzmann modeling	
Umicore	Provide tailored MEAs	Virginia Tech	Membrane characterization	
U Delaware	Membrane durability with radical stabilization	RPI	Membrane development	
Robert Bosch	Voltage loss analysis and modeling discussions	Texas A&M University	Sulfonated ionic liquid block co-polymer	
Celadyne	Evaluation of advanced membrane	Toyota Research Institute	Machine learning for membrane design	
CEA - Grenoble	X-ray and neutron scattering experiments	Chemours	Membrane durability	


Inclusion, Diversity, Equity, Accountability

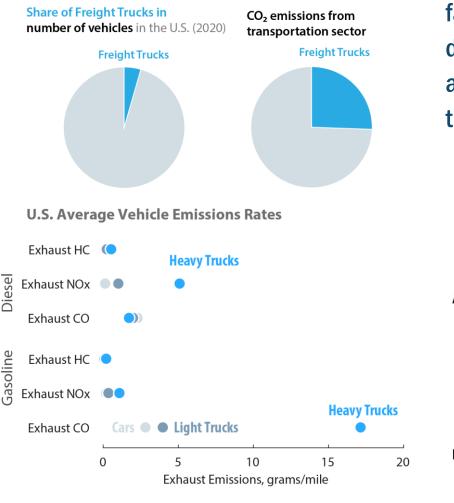
Outreach and Workforce Development


- Sour labs hosted UGS, GRA interns and DOE SCGSR Fellows visiting national labs to gain hand-on experience working with fuel cell systems and materials and learn about hydrogen technologies
- **W** Two new MSI students with M2FCT starting summer 2022
- Internship programs (K12 and SULI) for summer 2022
- M2FCT added Discretionary projects which includes three MSIs:
 - ♦ Univ Cal Irvine (UCI) AANAPISI and HSI
 - ♦ Univ Cal Merced (UCM) HSI
 - ✤ Florida International University (FIU) HSI

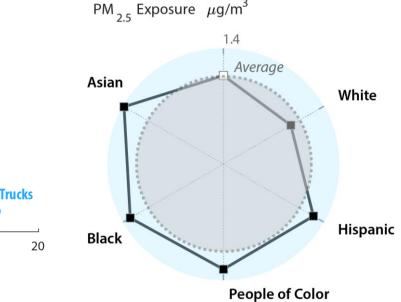
Dr. David Alexander Ph.D Thesis: April 2022 HBCU - Undergrad

Bound Metal Deposition for fuel cell bipolar plates

M2FCT working with Minority Serving Institution Partnership Program



Energy Justice and Equity


Decarbonizing freight transportation and long-haul trucking

- Series Freight transportation is one of the major contributors to the emissions
- In particular, significantly higher
 NOx and CO emissions from trucks
 (vs. LDVs, cars) are a major
 environmental and health concern
- Underserved communities (e.g., near highways, ports and freight centers) are more vulnerable to exposure and experience adverse health effects

 Disadvantaged neighborhoods will be favorably impacted by decarbonization of freight transport and improvements to long-haul trucking corridors

Racial-ethnic minorites are exposed to higher than average emissions from Heavy-Duty and Off-Highway Vehicles

Future Work

- M2FCT consortium aimed at delivering MEAs and components that meet 2.5 kW/gPGM power (1.07 A/cm² current density) at 0.7 V
 - ✤ Targets are end-of-life performance
 - Sreater efficiency (68-72%)
 - ✤ High durability (1,000,000 miles; 25,000-30,000 hrs)
 - \checkmark Material down-selects ~ year 3
 - Catalyst areas Go/No-Go at Q6
- Analysis
 - Refine models, characterization, and diagnostics for heavy-duty operating conditions
 - **b** Define operating conditions efficiency and durability trade-offs
 - ✤ Coordinate and harmonize truck platforms and duty cycles
 - Scompare systems with different ratios of fuel cell power and battery energy storage
 - Sensitivity of performance, durability and cost to cell voltage target at EOL
 - $\boldsymbol{\S}$ Incorporate membrane durability in system analysis
- Machine learning / Data analysis
 - **Correlations of metadata for material and integration studies**

High-Performance Computing

- Unsteady FCS simulations on truck drive cycles
- Electrode and agglomerate structure
- Upscaling physics-based micro- and nano-scale models to cell models and optimization
- Durability
 - Develop refined ASTs for life-time prediction with heavy-duty materials and operating conditions
 - Extended catalyst AST from 30K cycles to 90K cycles
 - \circ Developing new H₂/Air MEA AST protocols specific for HDV
 - Propose new MEA AST protocol in collaboration with ASTWG by end of FY22
 - Selectrode stability Co dissolution rates from advanced catalysts
 - ✤ Membrane and ionomer durability with additives
 - > Prediction of membrane lifetime modeling FER data
 - Modeling of durability adjusted cost using real world drive cycles and degradation models
 - Understand long-term durability effects on other components (GDL, and bipolar plate AST development)

Future Work

Integration

Saseline SOA

- Establish benchmark performance and cost of state-of-art MEA
- Incorporate advance catalyst ink understanding into R2R manufacturing
- Integrate newly developed materials into optimized MEA structures
 - Membranes
 - o lonomers
 - Catalysts
 - Catalyst supports
 - GDLs
- Scatalyst layer studies
 - Understand cation migration effects on catalyst layer performance
 - Catalyst layer porosity
 - Catalyst ink to structure formation models
- Stransport Properties (Gas phase, water, cations)
 - Catalyst Layer
 - GDL

Material Development

- Assess and develop scalable PtCo intermetallic catalyst synthesis methods; study effects of Pt shell thickness, particle size, degree of ordering, core composition, and carbon support
- Optimize synthesis and post-synthesis treatment of PtNiN catalysts, increase N content of metal particles and supports through high-pressure nitriding, synthesize and evaluate high entropy alloys
- Evaluate durability of PtCo intermetallics and Pt/C modified with melamine and melamine-based polymers
- Sevaluate durability of Pt/C-MO_x in MEAs
- Explore grafting, cross-linking, block co-polymer and cathode catalyst layer fabrication strategies to address water solubility of high IEC ionomers
- Sevential scale of the sevential sevenger sevential sevenger retention additives in MEA cathode and membrane

Summary - Technical Accomplishments

- Analysis of operating conditions, performance & efficiency
 - **Solution** Several Sev
 - $\circ~$ Active and stable catalysts capable of meeting the targets

Scompared systems:

- $_{\odot}~$ Small Stack (175 kW $_{\rm e}$ System), Large Battery Hybrid System
 - Stack coolant exit temperature: 85°C
- $_{\odot}~$ Large Stack (425 kW $_{\rm e}$ System), Small Battery Hybrid System
 - Radiator frontal area: 50% larger than in diesel truck (Stack coolant exit temperature: 95°C)
- Stack power/size and idle power

Durability

- SASTWG and iDWG meeting regularly to advance heavy duty AST development
- Squantified effect of Co cations on CL performance
- Scatalyst layer thickness effect, support interactions and location of catalyst on durability elucidated
- Evaluated the role of catalyst layer cracks on catalyst durability
- Improvements to membrane durability
 - Stabilized radical Scavengers; Preventing Fe migration with Crack free MPL.
- ➡ H₂/Air MEA AST under development for 25,000+ lifetime. Test at 90 °C for accelerating degradation

Summary - Technical Accomplishments

Integration and Science of Manufacturing

- Setablished baseline performance for 90k AST cycles for 3 catalysts (informed systems analysis and go/no-go down selection)
- Selucidated evolving electrocatalyst structure as a function of durability to identify design needs
- Identified promising ionomer materials to reduce EOT transport losses without sacrificing kinetic performance
- ✤ Identified potential electrode structures to enable optimum transport characteristics
- **b** Mitigated crack formation without forsaking performance
- Showcased anisotropy in membrane coatings below 10 mm and established trends for membrane properties as a function of thickness
- **b** Demonstrated reduced electrode agglomeration with slower ink drying time
- Setablished two viable approaches for multilayer electrode coatings to facilitate improved performance/durability

Material Developments

- S Two PtNiN BNL catalysts and three LANL PtCo ordered intermetallic catalysts have exceeded the Q6 Go/No-Go criteria for performance and durability in an MEA
- ♦ Pt/C modified with co-polymer of melamine and formaldehyde showed reduced SO3- poisoning, improved ORR mass activity in MEA
- Synthesis method for oxide nano-particle additive to carbon supports was developed; improved Pt surface area retention demonstrated in aqueous electrolyte tests for Zr, Ta, and W oxide particle-modified Pt/C
- Solution batches of novel high IEC perfluoro polymers were synthesized, showing higher proton conductivity at all RHs versus Nafion control
- Scrown ether-functionalized oligomers and perfluorinated phosphonic acid additives synthesized; demonstrated to complex/retain Ce radical scavenger, and to mitigate PFSA degradation

Who is M2FCT? National Lab Contributors

Rajesh Ahluwalia Firat Cetinbas Nancy Kariuki John Kopasz Debbie Myers Jaehyung Park Voja Stamenkovic (UCI) Xiaohua Wang Andrew Star

Dan Hussey David Jacobson Jake LaManna

Grace Anderson Claire Arthurs Vince Battaglia Sarah Berlinger **Ashley Bird Hailey Boyer Anamika Chowdhury Arthur Dizon** Kenny Higa Samay Garg **Pryamvada Goyal** Hans Johansen **Doug Kushner** Ahmet Kusoglu Lalit Pant John Petrovick **Clay Radke Mayank Sabharwal** Harsh Srivastav **Adam Weber**

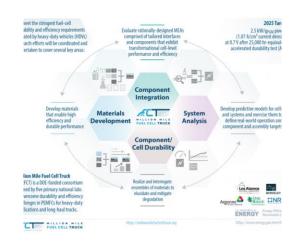
• Los Alamos

Tanya Agarwal Rod Borup Alex Gupta Yu-Seung Kim Siddharth Komini-Babu Chung Hyuk Lee Rangachary Mukundan Sarah Park Fahim Rahman Jacob Spendelow Chenyu Wang Xiaojing Wang

Carlos Baez-cotto Leiming Hu Sanghun Lee **Scott Mauger KC** Neverlin Zbyslaw Owczarczyk **Bryan Pivovar** Peter Rupnowski **Colby Smith Audrey Taylor Mike Ulsh** Tim Van Cleve **Gokul Venugopalan Erica Young** James Young

David Cullen Xiang Lyu Shawn Reeves Alexey Serov Haoran Yu Michael Zachman

Yang Qiu **Yuyan Shao**


Visit our website: millionmilefuelcelltruck.org

Main Page

Our Mission

Research

Publications

and a second	Fundamental Comparison of the second s
FILTER BY LAD	
🗆 ANL (22) 📀	Search results
🗆 LANL (22) 📀	Sediciriesdies
🗆 LBNL (47) 🛛 💿	Babu, Siddharth Komini, Thomas O'Brien, Michael J Workman, Mahlon Wilson, Rangachary Mukundan,
🗆 NIST (2) 📀	and Rodney I. Borup, "Editors' Choice-Diffusion Media for Cation Contaminant Transport Suppression into
🗆 NREL (8) 🛛 🔍	Fuel Cell Electrodes," Journal of the Electrochemical Society 168.2 (2021) 024501. DOI
ORNL (14)	Baker, Androw H., S. Nichael Stewart, Kannan P Ramaiyan, Dustin Banham, Siyu Ye, Fernando Garzon, Rangachary Mukundan, and Rodnov L Borup. "Deped Ceria Nanoparticles with Reduced Solubility and
FILTER BY TYPE:	Improved Peroxide Decomposition Activity for PEM Fuel Cells." Journal of the Electrochemical Society
Materials (64)	168.2 (2021) 024507. DOI
Legacy Papers (43)	Kim, Yu Sound, "Polymer Electrolytes with High Ionic Concentration for Fuel Cells and Electrolyzers," ACS
User Paolities (43)	Applied Polymer Materials 3.3 (2021) 1250 - 1270, DOI
mtegration (42)	Van Cleve, Tim, Guanxiong Wang, Mason Mooney, C. Firat Cetinbas, Nancy Karluki, Jaehyung Park,
Analysis (40)	Van Cleve, Tim, Guanxiang Wang, Hason Mooney, C. Firat Cetinbas, Nancy Karluki, Jaehyung Park, Ahmed Fargholy, Deborah J Myers, and K.C. Neyerlin. "Billioring electrode microstructure via Ink content to scalable improved related roose and/memory for datiment colabilities accessing a
Collaborations (36)	to enable improved rated power performance for platinum cobalthigh surface area carbon based polymer
Durability (29)	electrolyte fuel cells," Journal of Power Sources 482 (2021) 228889, DOI
 Special Articles (0) 	 Wang, Chenyu, and Jacob S Spendelow. "Recent developments in Pt-Co catalysts for proton-exchange membrane tuel cells." <i>Current Opinion in Electrochemistry</i> 28 (2021) 100715. DOI
FILTER BY YEAR:	
2021 (8) 2020 (13)	Ahluwalia, R. K. X. Wang, J-K Peng, V. Konduru, S. Arlsetty, N. Ramaswamy, and S. Kamaraguru, "Achieving 6,000-h and 8,000-h Low-PGM Electrode Durability on Automotive Drive Cycles," <i>Journal of The</i>
2019 (14)	Electrochemical Society 168.4 (2021) 044518. DOI
2018 (20)	Babu, Siddharth Komini, Rangachary Mukundan, Chunmei Wang, David Langlois, David A Cullen,
2017 (13)	Dennis Papadias, Karren I, More, Rajesh Ahluwalia, Jim Waldecker, and Rodney Borup. "Effect of
2019 (13)	Catalyst and Catalyst Layer Composition on Catalyst Support Durability * Journal of The Electrochemical
2019 (15)	Society 168.4 (2021) 044502. DOI
2014 (11)	Myers, Debocah J, A. Jeremy Kropf, Evan C Wegener, Hemma Mistry, Nancy Kariuki, and Jaeliyung
2013 (5)	Park, "Degradation of Platinum-Cobait Alloy PEMPC Cathode Catalysts in Catalyst-boomer Inks." Journal of The Electrochemical Society 168.4 (2021) 044510. DOI
	Borup, Rodney L, Ahmet Kusoglu, Kenneth C Neyerlin, Rangachary Mukandan, Rajesh K Ahluwalia, David A Caillen, Karren L More, Adam 2 Weber, and Debornh J Nyers. 'Recent developmenta in catalyst- nalated PEM net cell automathy.' <i>Current Oxylonic in Deborchemistry</i> 21 (2020) 192 - 200. DOI

Baker, Andrew M, Andrew R Crothers, Kavilha Chintam, Xiaovan Luo, Adam Z Weber, Rodney L Borun, and Alimet Kussiglu, "Morphology and Transport of Multivalent Cation-Exchanged Jonomer Membranes Haing Participrovulting Acid. Califies a Model Bastern 1 ACC Applied Defense Materials 2 B (2020) 3642

People and Partners

Capabilities Capabilities

Reset 6	Enter terms	Search CRetain current filters				
FILTER BY COMPONENT/MATERIAL:						
Membranes (30) Electrodes (29)	Search results					
Catalyst (23) Ionomers (17)	Accelerated Stress Te	stine (AST)				
Interfers (17) MEA (14) Cell (9)	Accelerated Stress Testing with in-situ reference electrodes					
Inks (7) GDL (6)	Atomic Force Microscopy (AFM)					
Plates (2)	ATR-FTIR					
FILTER BY LAB:	Bulk electrode limiting current					
ANL (7) ANL (36)	Cation migration/diffusion modeling					
🗆 LBNL (23) 🛛 🔘	CO Displacement Chronoamperometry					
NIST (1) NREL (30)	Colloidal synthesis					
ORNL (5)	Conductivity: Membra	ane Testing System and AC Impedance				
FILTER BY TECHNIQUE:	Contact Angle- Sessile drop					
Characterization (Structure) (24) Characterization (22)	Contact Angle- Sliding Angle Goniometer					
Synthesis (13) Cell & Testing (10)	Contact Resistance					
 Modeling, theory and analysis (7) 	alysis (7) Density Measurement and Pyncometer					

Outreach: Working Groups

International Durability Working Group

Characterization

International Durability Working Group | Collaboration Areas

Stressors related to Heavy Duty

elevant stressors are taken into account while

developing heavy duty ASTs. Efforts include

Benchmarking and Protocols

is group will explore MEA testing at vari performance and durability from small ential cells to operating stacks. The MEA will be exchanged between the various

Senchmarking Testing & Researching Protocol

Durability Variou Performance Cell Size

News

A Q&A with Berkeley Lab scientists on how hydrogen can help achieve net-zero emissions Hereite Instrument

News coverage: Los Alamos and M2FCT research on hydrogen-powered semi-trucks Internet

News coverage on M2FCT Research and Los Alamos Researchers In the News

M2FCT Research highlighted in the news Industry

Media: Hydrogen Fuel Cells are a promising green technology for trucks InterNet

Press Release on M2FCT Consortium and Research Herlight In the New

Million-Mile Fuel Cell Truck Consortium and the

Rod Borup writing on Fuel Cell Trucks for the Sante Fe New Mexican Induction

Rod Borup, the co-director of the Million Mile Fuel Ce contributed to an article on the N., see more

News Article on Fuel Cell Trucks in the Albuquerque Journal Hender Indexess

National Laboratory's progra... see more

Community News

Community News

DOE Announced SuperTruck 3 Funding Selections for electric and fuel-cell heavy-duty trucks

Ballard Fuel Cells have powered Medium and Heavy-Duty vehicles for more than 100-million-km

= ::

Fuel Cell Trucks

DOE Lab Report Examines Tota

Cost of Ownership of Electric and

Acknowledgements

DOE EERE Hydrogen and Fuel Cell Technologies Office

Technology Managers:

Greg Kleen, Dimitrios Papageorgopoulos

U.S. DEPARTMENT OF ENERGY

http://millionmilefuelcelltruck.org

User Facilities

DOE Office of Science: SLAC, LBNL-Advanced Light Source, LBNL-Molecular Foundry, ANL-Advanced Photon Source, LBNL-Molecular Foundry, ORNL-Center for Nanophase Materials Sciences, ANL-Center for Nanostructured Materials, NIST: BT-2

Back-up Slides

Publications, Awards

Publications

- Kim, Y.S.. "<u>Polymer Electrolytes with High Ionic Concentration for Fuel Cells</u> and <u>Electrolyzers</u>." ACS Applied Polymer Materials 3.3 (2021) 1250 - 1270.
- Berlinger, SA., Garg, S, Weber, AZ.. "Multicomponent, multiphase interactions in fuel-cell inks." Current Opinion in Electrochem. 29 (2021) 100744
- Petrovick, J.G., Anderson, G.C., Kushner, D.I., Danilovic, N., Weber, <u>A.Z.</u>. "<u>Method—Using Microelectrodes to Explore Solid Polymer Electrolytes</u>." *J Electrochemical Society* 168.5 (2021) 056517.
- Berlinger, S.A., McCloskey, B.D., Weber, AZ.. "Probing Ionomer Interactions with Electrocatalyst Particles in Solution" ACS Energy Letters 6 (2021) 2275 -2282. DOI
- Garg, S., Fornaciari, J., Weber, A., Danilovic, N., "fuelcell: A Python package and graphical user interface for electrochemical data analysis." *J of Open Source Software* 6.59 (2021) 2940. DOI
- <u>Gittleman, Craig S., Jia, Hongfei, De Castro, Emory S., Chisholm, Calum R.I.,</u> and <u>Kim, Yu Seung</u>. "<u>Proton conductors for heavy-duty vehicle fuel</u> <u>cells</u>." *Joule* (2021). <u>DOI</u>
- Lei, C, Yang, F, Macauley, N, Spinetta, M, Purdy, G, Jankovic, J, Cullen, D A., More, KL., Kim, Y.S, Xu, H. "Impact of Catalyst Ink Dispersing Solvent on PEM Fuel Cell Performance and Durability." *J Electrochemical Society* 168.4 (2021) 044517. DOI

- <u>Pant, L.M., Stewart, S, Craig, N, Weber, A Z.</u>. "<u>Critical Parameter</u> <u>Identification of Fuel-Cell Models Using Sensitivity Analysis</u>." *Journal of the Electrochem. Soc.* 168.7 (2021) 074501. <u>DOI</u>
- <u>Chowdhury, A., Bird, A., Liu, J., Zenyuk, I.V., Kusoglu, A., Radke, C.J., Weber,</u>
 <u>A. "Linking Perfluorosulfonic Acid Ionomer Chemistry and High-Current</u>
 <u>Density Performance in Fuel-Cell Electrode</u>." *ACS App. Mat. & Interfaces* 13.36 (**2021**) 42579 -42589
- Luo, X., Lau, G., Tesfaye, M., Arthurs, C.R., Cordova, I., Wang, C., Yandrasits, M.I, Kusoglu, A. "Thickness Dependence of PEM Properties," *J Electrochem. Soc.* 168 (**2021**) 104517
- Yu H., Zachman M.J., Li C., Hu L., Kariuki N.N., Mukundan R., Xie J., Neyerlin K.C., Myers D.J., Cullen D.A. <u>"Recreating Fuel Cell Catalyst Degradation in</u> <u>Aqueous Environments for Identical-Location Scanning Transmission Electron</u> <u>Microscopy Studies,"</u> (2022)
- Petrovick J.G., Radke C.J., Weber A.Z. <u>"Gas Mass-Transport Coefficients in</u> <u>Ionomer Membranes Using a Microelectrode</u>" (2022)
- Chen M., Li C., Zhang B., Zeng Y., Karakalos S., Hwang S., Xie J., Wu G.
 "<u>High-Platinum-Content Catalysts on Atomically Dispersed and Nitrogen</u> <u>Coordinated Single Manganese Site Carbons for Heavy-Duty Fuel Cells</u>." *Current Opinion in Electrochemistry* 169.3 (2022)

Awards

- Chung Hyuk Lee was awarded the Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship
- Sidd Rajupet, for winning the DoD National Defense Science and Engineering Graduate (NDSEG) fellowship
- Rajesh Ahluwalia University of Chicago Board of Governors Distinguished Performance Award
- Rajesh and Xiaohua (ANL) received the 2021 AMR Award
- Siddharth Komini-Babu ECS Toyota Young Investigator award

Publications

Publications

- Kim, Y.S.. "Polymer Electrolytes with High Ionic Concentration for Fuel Cells and Electrolyzers." ACS Applied Polymer Materials 3.3 (2021) 1250 - 1270. DOI
- Berlinger, Sarah A., Garg, Samay, and Weber, Adam Z.. "Multicomponent, multiphase interactions in fuel-cell inks." *Current Opinion in Electrochem.* 29 (2021) 100744. DOI
- Petrovick, J.G., Anderson, G.C., Kushner, D.I., Danilovic, N., Weber, A.Z., "Method—Using Microelectrodes to Explore Solid Polymer Electrolytes." *Journal of The Electrochemical Society* 168.5 (2021) 056517. DOI
- Berlinger, S.A., McCloskey, B.D., Weber, AZ., "Probing Ionomer Interactions with Electrocatalyst Particles in Solution" ACS Energy Letters 6 (2021) 2275 - 2282. DOI
- Garg, S., Fornaciari, J., Weber, A., Danilovic, N., "fuelcell: A Python package and graphical user interface for electrochemical data analysis." J of Open Source Software 6.59 (2021) 2940. DOI
- <u>Gittleman, Craig S., Jia, Hongfei, De Castro, Emory S., Chisholm, Calum R.I.</u>, and <u>Kim, Yu Seung</u>. "Proton conductors for heavy-duty vehicle fuel cells." *Joule* (2021). <u>DOI</u>
- Lei, C, Yang, F, Macauley, N, Spinetta, M, Purdy, G, Jankovic, J, Cullen, D A., More, KL., Kim, Y.S, Xu, H. "Impact of Catalyst Ink Dispersing Solvent on PEM Fuel Cell Performance and Durability." J Electrochemical Society 168.4 (2021) 044517. DOI

- Pant, L.M., Stewart, S, Craig, N, Weber, AZ.. "Critical Parameter Identification of Fuel-Cell Models Using Sensitivity Analysis." Journal of the Electrochem. Soc. 168.7 (2021) 074501. DOI
- Chowdhury, A., Bird, A., Liu, J., Zenyuk, I.V., Kusoglu, A., Radke, C.J., Weber, A. "Linking Perfluorosulfonic Acid Ionomer Chemistry and High-Current Density Performance in Fuel-Cell Electrode." ACS App. Materials & Interfaces 13.36 (2021) 42579 -42589. DOI
- Luo, X., Lau, G., Tesfaye, Meron, Arthurs, Claire R., Cordova, Isvar, Wang, Cheng, Yandrasits, Michael, and Kusoglu, Ahmet. "Thickness Dependence of Proton-Exchange-Membrane Properties." *Journal of The Electrochemical Society* 168.10 (2021) 104517. DOI
- Yu H., Zachman M.J., Li C., Hu L., Kariuki N.N., Mukundan R., Xie J., Neyerlin K.C., Myers D.J., Cullen D.A.. "<u>Recreating Fuel Cell Catalyst Degradation in Aqueous Environments for</u> <u>Identical-Location Scanning Transmission Electron Microscopy Studies</u>." (2022). <u>DOI</u>
- Petrovick J.G., Radke C.J., Weber A.Z.. "<u>Gas Mass-Transport Coefficients in Ionomer</u> <u>Membranes Using a Microelectrode</u>." (2022). <u>DOI</u>
- Chen M., Li C., Zhang B., Zeng Y., Karakalos S., Hwang S., Xie J., Wu G. . "<u>High-Platinum-Content Catalysts on Atomically Dispersed and Nitrogen Coordinated Single Manganese Site Carbons for Heavy-Duty Fuel Cells</u>." *Current Opinion in Electrochemistry* 169.3 (2022). <u>DOI</u>

2021 Reviewer Comments

Project strengths:

- Really, everything is a strength. The team is great. The institutional structure is very good. The project is tackling the correct problems.
- The team and collaborations, baseline testing and standardizations, and incorporation of academia and industry through FOAs are all strengths.
- The project has a very strong team, excellent analytical capabilities, and the latest approaches, e.g., machine learning.
 There is excellent collaboration.
- The "team-of-teams" approach grouping well-recognized experts is a real strength of this project.
- The goal of the project, understanding how to increase the durability of fuel cell MEAs, is important.

Seviewer Strengths greatly out-weighted weaknesses in the 2021 review

2021 Reviewer Comments

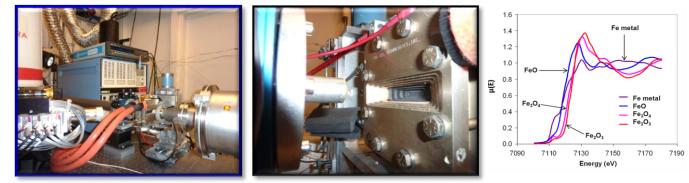
Project weaknesses:

- Even if considering all stack components in the scope of the project, it appears to be very focused (perhaps too much so) on MEA developments for HDVs. Connections with ongoing DOE-funded projects on MEAs, membranes, and stacks seem to be put in place, and it will be important to ensure regular effective exchanges.
 - M2FCT had it's first in-person meeting March 2,3 2022. This was delayed because of COVID. Two in-person meetings per year are intended. Direct communication with projects will be designed as each project needs to meet those project needs. A coordination officer exists specifically to coordinate exchanges.
- The project may be too large and all-encompassing for effective management.
 - Solution Management was designed with co-directors, deputy directors to address the size of the consortium
- The project is not tailored to guide controls designs, and there are few new ideas in the project/presentation.
 - Subscription Section S

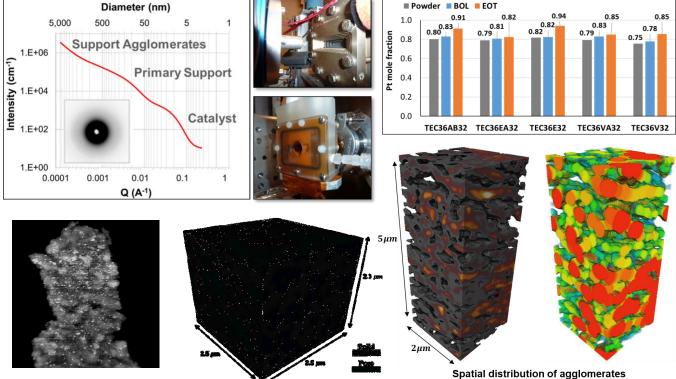
2021 Reviewer Comments

Recommendations for additions/deletions to project scope:

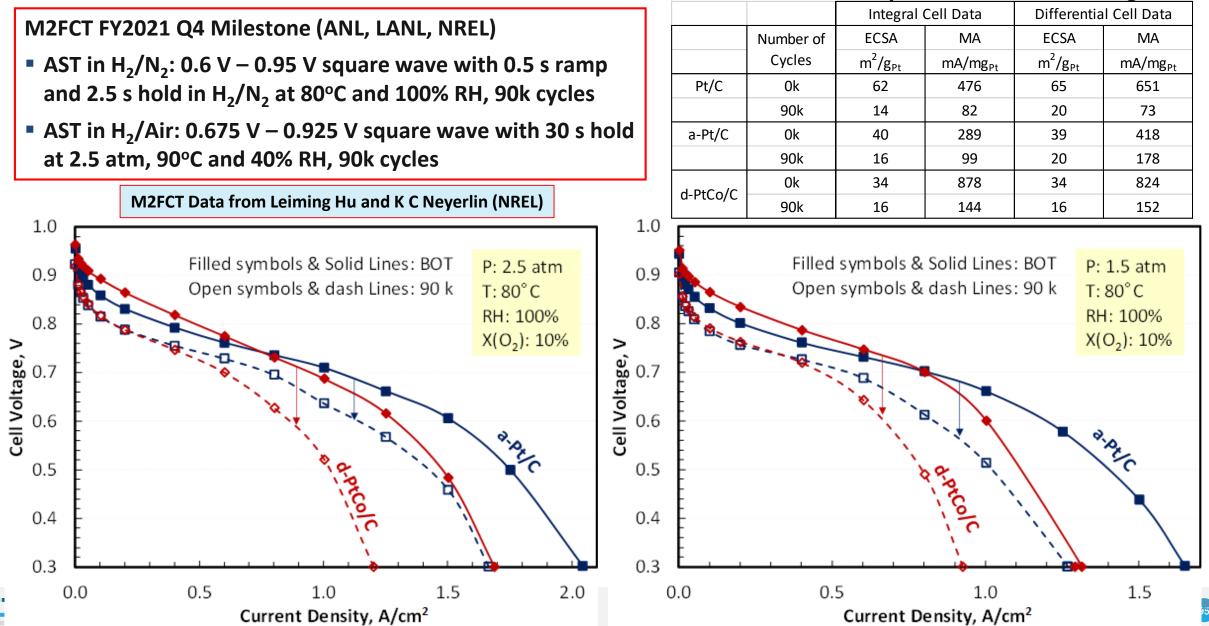
- The DOE researchers need to do a comprehensive literature review of much of the proposed work and determine whether the proposed experimental work needs to be completed, or whether controls parameters can be recommended on existing publications and patents. The team must include one or two people from outside the DOE fuel cell community The researchers should not be in administrative roles.....
 - Solutions: M2FCT has an External Advisory Board which is mostly people from industrial positions. The M2FCT consortium was formed addressing the requirements in the solicitation, and all staff scientists are engaged in R&D.
- The project is so large and includes so many different activities that it feels like a shotgun of work. It may be better to separate out some of the work for separate reviews, rather than review all the work together. There could still be a high-level review of the consortium/approach in one normal-length review session. The team might consider studies to support freeze-start operation, such as material and MEA properties under sub-zero conditions.
 - ✤ In future years we intend to have separate posters on a number of the PI led topics.
 - Series Freeze-start operation can be considered; however, to-date this has been de-emphasized due to comments from industrial input.
- The scope of the project is quite large and ambitious. The challenge will be to cover all the foreseen items and to ensure effective coordination.
 - Solution to the successful; the targets are ambitious as are many of the Hydrogen Shot targets.


LANL and BNL Hydrogen-Air MEA Performance and Durability Summary

Catalyst (Particle size)	Number of Cycles	$\frac{ECSA}{(m^2/g_{Pt})}$	MA (mA/mg _{Pt})	j at 0.7V (A/cm²)	<i>j</i> at 0.8V (A/cm ²)	
BNL 35%-DA_IntPtNiN/HSC	0K	53	550	1.22	0.50	
BNL-C (4.5 nm)	90K	22	210	0.96	0.25	
BNL 40%-IntPtNiN/HSC	0K	51	560	1.19	0.45	
BNL-D (4.8 nm)	90K	25	246	0.95	0.27	
a-Pt/C	0K	39	418	1.17	0.32	Bench
(4~5 nm)	90K	20	178	0.85	0.14	Umico
Pt/C	0K	65	651	0.71	0.18	
(2~3 nm)	90K	20	73	0.13	0.03	
d-PtCo/C	0K	34	824	1.18	0.50	
(4~5 nm)	90K	16	152	0.75	0.16	
LANL 35%-L1 ₂ -PtCo/HSC	0K	36	575	1.29	0.41	
(5.7 nm)	90K	13	120	0.78	0.17	
LANL 20%-L10-PtCo/HSC	0K	49	719	1.09	0.35	
(6.3 nm)	90K	26	362	0.90	0.27	
UD/LANIL 200/ L1 DrCo/MacCN	0K	67	350	1.07	0.36	
UB/LANL 20%-L1 ₂ -PtCo/MnCN	90K	22	265	0.88	0.25	

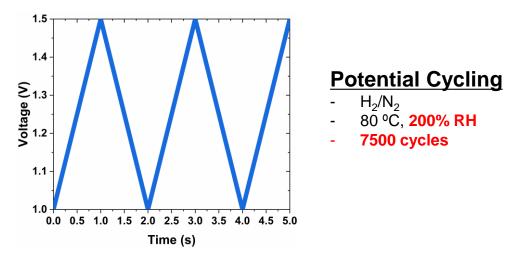

Benchmark Umicore Pt50 0550

X-ray Characterization at the Advanced Photon Source


- X-ray absorption (10-BM, 10-ID, 12-BM):
 - vidation state, electronic structure (density of states), local coordination of absorbing atom, identity of neighboring atoms, bond distances
 - Solution Solution Solution Constraints and Solution Solut
- X-ray scattering (9-ID, 12-BM):
 - $\$ particle/aggregate shape, size, size distribution
 - Can be performed on powders, precursors, catalystionomer inks, and electrodes in aqueous or fuel cell environments
- X-ray imaging and tomography (32-ID):
 - Nano- and micro-structure of materials and materials and pores in cell layers
 - Primarily ex situ, but can be performed under controlled T, RH, atmosphere, and potential

Baselining MEA Performance and Durability in Differential and Integral Cells

Similar electrode stability in differential and integral cells


Unvalidated ASTs: GDLs an BPPs

GDLs

 Chemical Ageing – peroxide: 30% H₂O₂
 Chemical Ageing – peroxide: 3% H₂O₂ Sometimes refluxed at 80C

3) Submersion in H_2O (with N_2 , H_2 or Air)

4) Potential Cycling

BPPs Table 3.4.8 Technical Targets: Bipolar Plates for Transportation Applications Characteristic Units 2015 Status 2020 Targets Corrosion, anode9 uA/cm^2 No active peak^h <1 and no active peak Corrosion, cathode $\mu A / cm^2$ < 0.1° <1 >100^j >100 S/cm Electrical conductivity Areal specific 0.006^h < 0.01 ohm cm² resistance^k 1.6 1.4 1.2 SHE) 1.0 Potential (V vs. 0.8 — Ni50Cr 40C 0.6 Ni50Cr 800 0.4 G35 40C 0.2 G35 80C 0.0 1.E-06 1.E-10 1.E-08 1.E-04 1.E-02 1.E+00 Current density (A/cm²) Gold coated plate Carbon paper (GDL)

Carbon paper (GDL) Gold coated plate

F

M2FCT discussing AST validation for HDV and 25,000 hrs

