

Scott L. Swartz. Ph.D. (PI)

Nexceris LLC (Lewis Center, OH)

DOE Project Award No. DE-EE0009621

June 6-8, 2022

DOE Hydrogen Program

AMR Project ID: P200

2022 Annual Merit Review and Peer Evaluation Meeting

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Project Goals

The project goal is to develop cell and stack manufacturing technologies to enable an HTE stack manufacturing cost of less than \$100 per kW.

- Demonstrate cell design, electrode materials and manufacturing methods to reduce cell cost by 15 percent; improve performance to enable stack operation at 1.285 V/cell and 1.0 A/cm².
- Implement lower cost and higher performance cells in stacks, with the goals of achieving a stack cost of \$150/kW and defining a path to a stack cost of \$100/kW.
- Demonstrate target stack performance and achieve steady-state stack degradation rate of less than 10 μV/hour over 3000 hours.
- Validate cell and stack manufacturing cost reductions via third-party analyses; validate stack performance and durability enhancements via third-party stack testing.

Project Overview

Timeline and Budget

Project Start Date: 04/01/22 Project End Date: 03/31/22 Total Project Budget: \$4,166,575 DOE Share: \$3,333,260 Cost Share: \$833,315

Project Partners

Project Lead: Nexceris

Subcontractor: Idaho National Laboratory (INL)

Subcontractor: Strategic Analysis Inc. (SAI)

Team Member Roles

Nexceris: Project management, cell and stack cost reduction, stack fabrication and testing.

INL: HTE stack validation testing.

SAI: Cell and stack manufacturing cost analysis.

Industry Collaborators

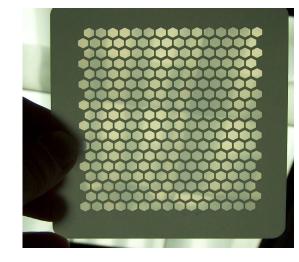
Xigent: Automation of stack component manufacturing.

Edison Welding Institute: Stack component manufacturing technology.

Relevance and Impact

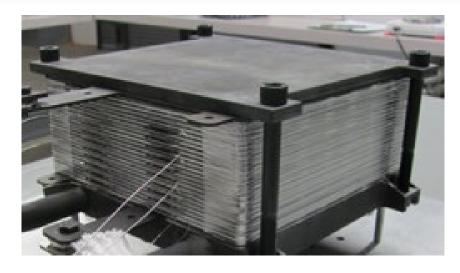
Attribute	Current DOE Metric	Nexceris (demonstrated)	Nexceris (this project)
Cell Performance	< 1.4 V at 2.0 A/cm ²	1.4 V at 2.0 A/cm ²	1.4 V at 2.0 A/cm ²
Stack Performance	1.285 V at 1.0 A/cm ²	1.25 V at 0.6 A/cm ²	1.285 V at >1.0 A/cm ²
Stack Durability	11 μV/hr	< 10 µV/hr (700 hours)	< 10 µV/hr (>3000 hours)
Cell Active Area	n/a	228 cm ²	228 cm ²
Cell Production Yield	n/a	> 90 percent	> 98 percent
Stack Cost	\$155-188/kW (*)	\$426/kW (#)	< \$100/kW
Stack Size	n/a	4 kW	29 kW (&)
(*) Deced an analysis newformed by Christopic Analysis and Idaha National Laboratowy			

(*) Based on analyses performed by Strategic Analysis and Idaho National Laboratory.


(#) Based on a production volume of 50,000 stacks per year (100 cells, 228 cm² active cell area).

(&) Based on 100-cell, 228-cm² active area stack at 1.285 V/cell and 1.0 A/cm² (enabled by project).

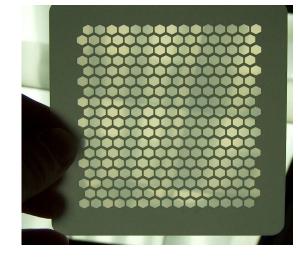
Successful execution of this project will enable high temperature electrolysis stacks to be manufactured at a cost of \$100 per kW, which is required to achieve DOE's Earthshot goal of producing hydrogen at \$1/kg.



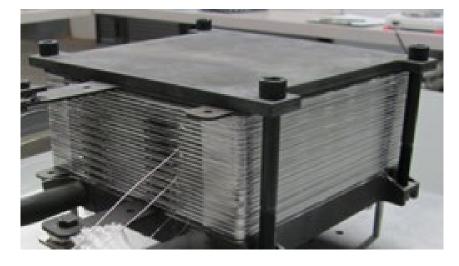
Nexceris Cell and Stack Designs

Nexceris' FlexCell

- Two-layer membrane mesh layer mechanically supporting a thin electrolyte membrane.
- Thin membrane for improved performance.
- Dense cell periphery facilitates sealing.
- Electrode material/process flexibility.


Nexceris' FlexStack

- Stack components designed for low-cost manufacture.
- External air manifolding scheme simplifies egress of oxygen effluent into ambient.
- Large active cell area enables appropriate stack module size for megawatt-scale HTE systems.



Cell and Stack Cost Reduction Approaches

Cell Cost Reduction

- Scale-up production of advanced barrier layer and oxygen electrode materials.
- Reduce thicknesses of FlexCell support and membrane layers
- Increase active cell area.

Stack Cost Reduction

- Validate low-cost interconnect alloy material.
- Long term stack durability testing.
- Reduce number of components in stack repeat unit.
- Automation of stack component manufacturing.

Tasks and Milestones (Budget Period 1)

Task 1. Manufacturing Cost Analyses

Milestone 1.1: Current-state cell manufacturing cost model (M3).Milestone 1.2: Current-state stack manufacturing cost model (M6).

Task 2. Cell Cost Reduction

Milestone 2.1.1: Define baseline performance and conditions (M3).Milestone 2.1.2: Scale-up of oxygen electrode materials production (M6).Milestone 2.1.3: Performance replicated with scaled-up electrodes (M9).

Task 3. Stack Cost Reduction

Milestone 3.2.1: Validate low-cost interconnect alloy material (M9).

Task 4. Stack Demonstration Testing

Milestone 4.1: Baseline and cost-reduced stacks tested at INL (M12).

Go/No-Go Decision Point (M12)

Demonstrate a 5-cell stack using advanced oxygen electrodes and low-cost coated interconnect alloy operating at ≤ 1.4 V/cell at ≥ 0.8 A/cm² with ≥ 75 mol% steam content and $\geq 50\%$ steam utilization for ≥ 1000 hours.

Accomplishments and Progress

This project started on April 1, 2022.

Responses to 2021 AMR Review Comments

This project was not reviewed in 2021.

About Nexceris

Nexceris, LLC

- Founded in 1994, privately held, located in Lewis Center, Ohio.
- About 70 team members (increased by more than 80 percent in last four years).
- 25+ years of experience in the solid oxide fuel cell and electrolysis space.
- Vertically integrated manufacturer of solid oxide materials, cells, coatings and stacks.

Proven solid oxide technology provider and stack manufacturer with state-of-the-art high temperature electrolysis technology.

Contact Information

Scott Swartz

s.swartz@nexceris.com

www.nexceris.com

