FUEL CELL TRUCK

Formulation Strategies for the Large-Scale Manufacturing of Crack-Free Electrodes

Carlos Baez-Cotto

Process Science and Engineering Group – NREL Scott Mauger and Michael Ulsh

HFTO Postdoctoral Recognition Awards – May 11th, 2022.

NREL

- Bertrand Tremolet de Villers
- James Young
- Jason Pfeilsticker
- KC Neyerlin
- Tim Van Cleve

- ANL
 - Debbie Myers
 - Firat Cetinbas
 - Jaehyung Park
 - Nancy Kariuki

ORNL

- David Cullen
- Haoran Yu
- Kimberly Reeves

JRF

NATIONAL RENEWABLE ENERGY LABORATORY

Argonne

U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Cathode Catalyst Layers in PEMFCs: Scalability Challenges

Scalability Challenges

Light-Duty

Heavy-Duty

30 µm

MEA untested

Untested MEA

 0.1 mg Pt/cm^2

 0.3 mg Pt/cm^2 If cracking is detrimental for fuel cell durability, why not

mitigate it?

Tested MEA – 7 min cycling

3

Cathode Catalyst Layers in PEMFCs: Scalability Challenges

Scalability Challenges

Roll-to-roll (R2R) manufacturing

Scalable manufacturing strategies (rod coating, R2R) may contain defects in the electrode Heavy-Duty

0.3 mg Pt/cm²

It is critical to understand how to mitigate electrode cracking in the manufacturing stage

Untested MEA

Pre-existing electrode cracks Membrane cracking Leakage Shorter fuel cell lifespan

Pestrak et al. J Fuel Cell Sci. Technol. 2010, (7) https://global.toyota/en

How Ink Formulations Can Dictate Electrode Cracking?

Cracking may result from a combination of ink material properties and coating thickness

M, ϕ_{rcp} , $R \rightarrow$ Dictate CCT Higher magnitude \leftrightarrow Higher fracture resistance

Electrode Cracking as a Function of Solvent Ratio

Electrode Cracking as a Function of Solvent Ratio

Electrode Cracking as a Function of Solvent Ratio

8

New Formulation Route: Incorporation of Polymeric Additives

Electrode Imaging Techniques to Elucidate Microstructure

HFTO Postdoctoral Recognition Awards – MAY 11TH, 2022 FUEL CELL TRUCK

Mechanism of Interaction in Additive-Loaded Inks

Nafion

`ОН

Mechanism of Interaction in Additive-Loaded Inks

Unpublished Work **12**

Electrochemical Performance of Additive-Loaded Electrodes

Summary of Relevant Formulation Approaches

FUEL CELL TRUCK

Formulation Strategies for the Large-Scale Manufacturing of Crack-Free Electrodes

Carlos Baez-Cotto

Process Science and Engineering Group – NREL Scott Mauger and Michael Ulsh

HFTO Postdoctoral Awards– May 11th, 2022.

