High-Performing and Durable Electrodes for PEMFCs

ChungHyuk Lee
MPA-11: Material Synthesis and Integrated Devices
Los Alamos National Laboratory
Date: May 11th, 2022
Introduction

Ph.D. Mech. Eng., Aug 2019
University of Toronto
Advisor: Prof. Aimy Bazylak

PD Fellow, Mar 2020 – present
Los Alamos National Laboratory
Mentors: Dr. Siddharth Komini Babu
Dr. Jacob S. Spendelow
Dr. Rangachary Mukundan
Dr. Rod L. Borup

Flow and Mass Transport for PEM Electrolyzers

High-Performing and Durable Electrodes for PEMFCs
#1: Next Generation Electrode Structures for PEMFC

Motivation: challenges for conventional electrodes
- Random mixture of Pt/C, ionomer, and pore
- Tortuous and inefficient H⁺/O₂ transport pathways

Approach
- Partition H⁺/O₂ transport pathways via **groovy electrodes**

Two main features
1) High I/C electrode ridges for H⁺
2) Grooves for O₂

Groovy Electrodes Enable Facile H^+/O$_2$ Transport

- Increase in I/C ratio reduced sheet resistance.
- Similar trend was observed after the addition of grooves.
- 60% decrease (groovy I/C 1.2 vs. flat I/C 0.9)

- Increase in I/C ratio increased oxygen transport resistance.
- R_{O_2} of groovy (I/C 1.2) became comparable to that of flat (I/C 0.9).

ChungHyuk Lee from LANL
Closer Grooves Enhance Performance

- Closer grooves led to shorter O_2 diffusion path.
 - Reduction in groove spacing leads to reduced distance from electrode interior to surface
 - 8-fold from flat to 1.8 µm/3 µm

• Improved performance across a wide range of operating conditions
• Groovy electrodes are particularly advantageous under dry conditions.
 - H^+ transport-limited under dry conditions, and higher I/C enhances H^+ transport.

Cell: 0.3 mgPt/cm², I/C 0.9, TEC10E40E, N211, SGL 22BB
Testing: 5 cm² differential, 1000/3000 sccm H₂/Air, 150 kPa, 80°C

ChungHyuk Lee from LANL
Motivation: challenges of crack investigation

- Difficulty in controlling crack width, depth, density, and orientation
- Unclear effects of cracks on electrode durability

Approach

- Using lithography-based approach to engineer cracks with prescribed morphology

After support AST, denser cracks enhance the performance of PEMFCs.

Negligible difference in carbon loss (measured via NDIR), MA, ECSA, and HFR.
Electrode Cracks Reduce O\textsubscript{2} Transport Resistance

- After support AST, R\textsubscript{O2} is significantly lower with cracks.
 - Electrode collapses, leading to R\textsubscript{O2}-limited structure
 - Cracks provide shorter O\textsubscript{2} path
- Cracks are getting wider with carbon corrosion.
 - Preferential corrosion near cracks?

• No preferential corrosion was observed.

• Two hypotheses:
 1. Cracks mainly act as O\textsubscript{2} pathway rather than H\textsubscript{2}O
 2. Support AST conditions do not flood the cracks
#3: Cobalt Contamination in PEMFC Electrodes

Motivation: challenges of understanding Co^{2+} effects
• Deconvoluting physical loss of Co and effect of Co^{2+} contamination in ionomer/membrane

Approach
• Electrode decal-based MEAs tested under various % Co^{2+}

M2FCT Year 1 Milestone (Q3):
Acceptable transition metal loss from alloy catalysts (% of sulfonyl acid sites in ionomer layer) defined with respect to electrode layer losses. (LBNL, LANL, ORNL, ANL, NREL)

• **R_{MT} increased** with increasing Co$^{2+}$ doping.
 ➢ Water uptake in the ionomer decreases with increasing Co$^{2+}$ doping.

• **R_{sheet} increased** with increasing Co$^{2+}$ doping.
 ➢ Co$^{2+}$ ion-exchanging with sulfonic acid sites lead to poor proton transport.

• Membrane resistance, and kinetic resistance remained relatively unchanged.

Cell: 0.25 mgPt/cm2, I/C 0.9, TEC10E40E, N211, SGL 22BB, I/C 0.9
Testing: 5 cm2 differential, 1000/3000 sccm H$_2$/Air, 150 kPa, 80°C
Summary and Future Work

#1: Groovy Electrode Enhances Performance.
- Enhanced H$^+$ and effective O$_2$ transport led to improved performance, particularly under dry conditions.
- **Future work** will couple experimental results with computational tools to further optimize structure for enhanced performance.

#2: Electrode cracks lead to improved performance after support AST.
- After electrode collapses, cracks act as a short-cut for O$_2$ to diffuse to reaction sites.
- **Future work** will examine the effect of electrode cracks on membrane durability during RH cycling.

#3: ~44% Co$^{2+}$ exchange can be tolerated in electrode ionomers.
- Co$^{2+}$ exchange results in higher R_M and R_{sheet}.
- **Future work** will explore operating strategies/electrode designs to suppress Co$^{2+}$ effects.

Aspirations: develop my own research group centered around hydrogen and fuel cell technology, to (1) advance the science and technology and (2) train next generation scientists and engineers.
Acknowledgements

• M2FCT, HFTO, Office of EERE (US DOE)
• Laboratory Directed Research and Development Program (LANL)
• National Science and Engineering Research Council (Canada)
• Siddharth Komini Babu, Jacob S. Spendelow, Rangachary Mukundan, Rod L. Borup (LANL)
• Computed-tomography by Brian Patterson and Ethan Walker (LANL)
• Microfabrication at Center for Integrated Nanotechnologies (SNL)
• Membrane measurements by Adlai Katzenberg, Ahmet Kusoglu (LBNL)
• Impedance modelling by Xiaohua Wang, Jui-Kun Peng, Rajesh K. Ahluwalia (ANL)

ChungHyuk Lee from LANL