High-Performing and Durable
Electrodes for PEMFCs

ChungHyuk Lee
MPA-11: Material Synthesis and Integrated Devices

Los Alamos National Laboratory
Date: May 11th, 2022 ‘?
9..0

Los Alaomos

NATIONAL LABORATORY




Introduction

Flow and Mass Transport for PEM Electrolyzers

Ph.D. Mech. Eng., Aug 2019
University of Toronto
Advisor: Prof. Aimy Bazylak

Attenuated
Beam

PD Fellow, Mar 2020 — present High-Performing and Durable Electrodes for

Los Alamos National Laboratory PEMFCs
Mentors: Dr. Siddharth Komini Babu

Dr. Jacob S. Spendelow

Dr. Rangachary Mukundan

Dr. Rod L. Borup

% Los Alamos

NATIONAL LABORATORY

ChungHyuk Lee from LANL 2



#1: Next Generation Electrode Structures for PEMFC

Motivation: challenges for conventional electrodes = Approach
* Random mixture of Pt/C, ionomer, and pore * Partition H*/O, transport pathways via groovy electrodes

* Tortuous and inefficient H*/O, transport pathways

Two main features
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Groovy Electrodes Enable Facile H*/O, Transport
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* Increase in I/C ratio reduced sheet resistance.

e Similar trend was observed after the addition of
grooves

* 60% decrease (groovy I/C 1.2 vs. flat 1/C 0.9)
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that of flat (1/C 0.9).
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* Increase in I/C ratio increased oxygen transport

* Ry, of groovy (I/C 1.2) became comparable to
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Closer Grooves Enhance Performance
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* Closer grooves led to shorter O, diffusion path.
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* Improved performance across a wide range

» Reduction in groove spacing leads to reduced distance of operating conditions
from electrode interior to surface

* Groovy electrodes are particularly
» 8-fold from flat to 1.8 um/3 um

advantageous under dry conditions.

» H* transport-limited under dry

L) . +
Cell: 0.3 mg,,/cm?,1/C 0.9, TEC10E40E, N211, SGL 22BB COﬂdItIOﬂS, and hlgher I/C enhances H

S Testing: 5 cm? differential, 1000/3000 sccm H,/Air, 150 kPa, 80°C transport.
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#2: Electrode Crack Density Effects on Durability

Motivation: challenges of crack investigation Approach

 Difficulty in controlling crack width, depth, density, ¢ Using lithography-based approach to engineer cracks with
and orientation prescribed morphology

* Unclear effects of cracks on electrode durability — ot press
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Denser Cracks Improve Performance Post-AST
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* After support AST, denser cracks enhance the

performance of PEMFCs.

Cell: 0.3 mgpt/cmz, |/C 0.9, TEC10E40E, N211, SGL 22BB, I/C 0.9
Testing: 5 cm? differential, 1000/3000 sccm H,/Air, 150 kPa, 80°C, 100% RH
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Electrode Cracks Reduce O, Transport Resistance
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* After support AST, R, is significantly
lower with cracks.

» Electrode collapses, leading to Roo-
limited structure

» Cracks provide shorter O, path

» Cracks are getting wider with carbon
corrosion.

> Preferential corrosion near cracks?
S
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* No preferential corrosion was
observed.

* Two hypotheses:

1. Cracks mainly act as O, pathway
rather than H,O

2. Support AST conditions do not
flood the cracks
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#3: Cobalt Contamination in PEMFC Electrodes

Motivation: challenges of understanding Co?* effects Approach
* Electrode decal-based MEAs tested under various % Co?*

» Deconvoluting physical loss of Co and effect of Co?*
contamination in ionomer/membrane
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» Co?* effects were not observed during initial
M2FCT Year 1 Milestone (Q3): investigations.

Acceptable transition metal loss from alloy catalysts (% of
sulfonic acid sites in ionomer layer) defined with respect to * Inactive membrane area acts as a Co?* sink, which

electrode Iayer |OSS€S.(LBNL, LANL, ORNL, ANL, NREL) suppresses C02+ effects on performance.
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Cobalt Contamination in PEMFC Electrodes
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Summary and Future Work

#1: Groovy Electrode Enhances Performance.

» Enhanced H* and effective O, transport led to improved performance, particularly under dry conditions.

» Future work will couple experimental results with computational tools to further optimize structure for
enhanced performance.

#2: Electrode cracks lead to improved performance after support AST.

» After electrode collapses, cracks act as a short-cut for O, to diffuse to reaction sites.
» Future work will examine the effect of electrode cracks on membrane durability during RH cycling.

#3: ~44% Co?* exchange can be tolerated in electrode ionomers.
» Co%* exchange results in higher Ry,; and R .-

» Future work will explore operating strategies/electrode designs to suppress Co?* effects.
Aspirations: develop my own research group centered around hydrogen and
fuel cell technology, to (1) advance the science and technology and (2) train
next generation scientists and engineers.
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