High-Performing and Durable Electrodes for PEMFCs

ChungHyuk Lee

MPA-11: Material Synthesis and Integrated Devices

Los Alamos National Laboratory

Date: May 11th, 2022

Introduction

Ph.D. Mech. Eng., Aug 2019 University of Toronto Advisor: Prof. Aimy Bazylak

Flow and Mass Transport for PEM Electrolyzers

PD Fellow, Mar 2020 – present Los Alamos National Laboratory Mentors: Dr. Siddharth Komini Babu Dr. Jacob S. Spendelow Dr. Rangachary Mukundan Dr. Rod L. Borup

High-Performing and Durable Electrodes for PEMFCs

#1: Next Generation Electrode Structures for PEMFC

Motivation: challenges for conventional electrodes

- Random mixture of Pt/C, ionomer, and pore
- Tortuous and inefficient H⁺/O₂ transport pathways

Approach

• Partition H⁺/O₂ transport pathways via **groovy electrodes**

Groove Width/Groove Spacing

Two main features

- High I/C electrode ridges for H⁺
- 2) Grooves for **O**₂

2.5 μm/6 μm

Scale bar: 5 µm

[1] Ramaswamy et al., Journal of Electrochemical Society, 167, 064515 (2020)

Groovy Electrodes Enable Facile H⁺/O₂ Transport

- Increase in I/C ratio reduced sheet resistance.
- Similar trend was observed after the addition of grooves
- 60% decrease (groovy I/C 1.2 vs. flat I/C 0.9)

- Increase in I/C ratio increased oxygen transport resistance.
- R₀₂ of groovy (I/C 1.2) became comparable to that of flat (I/C 0.9).

Closer Grooves Enhance Performance

- Closer grooves led to **shorter O₂ diffusion path**.
 - Reduction in groove spacing leads to reduced distance from electrode interior to surface
 - > 8-fold from flat to 1.8 μ m/3 μ m

Cell: 0.3 mg_{Pt}/cm², I/C 0.9, TEC10E40E, N211, SGL 22BB Testing: 5 cm² differential, 1000/3000 sccm H₂/Air, 150 kPa, 80°C

Flat (I/C 0.9) vs. 1.8 $\mu m/3$ μm (I/C 1.2)

- Improved performance across a wide range of operating conditions
- Groovy electrodes are particularly advantageous under **dry** conditions.
 - H⁺ transport-limited under dry conditions, and higher I/C enhances H⁺ transport.

#2: Electrode Crack Density Effects on Durability

Motivation: challenges of crack investigation

- Difficulty in controlling crack width, depth, density, and orientation
- Unclear effects of cracks on electrode durability

Approach

 Using lithography-based approach to engineer cracks with prescribed morphology

Denser Cracks Improve Performance Post-AST

After support AST, denser cracks enhance the performance of PEMFCs.

Cell: 0.3 mg_{Pt}/cm², I/C 0.9, TEC10E40E, N211, SGL 22BB, I/C 0.9 Testing: 5 cm² differential, 1000/3000 sccm H₂/Air, 150 kPa, 80°C, 100% RH

• **Negligible difference** in carbon loss (measured via NDIR), MA, ECSA, and HFR.

[1] Mendes et al., Sensors, 15, 11239 (2015)

Electrode Cracks Reduce O₂ Transport Resistance

- After support AST, R₀₂ is significantly lower with cracks.
 - Electrode collapses, leading to R₀₂limited structure
 - \succ Cracks provide shorter O₂ path
- Cracks are getting wider with carbon corrosion.

Preferential corrosion near cracks?

4 μm/40 μm, 1k

Membrane

Scale bar: 5 µm

- No preferential corrosion was observed.
- Two hypotheses:
 - 1. Cracks mainly act as O_2 pathway rather than H_2O
 - 2. Support AST conditions do not flood the cracks

#3: Cobalt Contamination in PEMFC Electrodes

Motivation: challenges of understanding Co²⁺ effects Approach

contamination in ionomer/membrane

M2FCT Year 1 Milestone (Q3):

Acceptable transition metal loss from alloy catalysts (% of sulfonic acid sites in ionomer layer) defined with respect to electrode layer losses.(LBNL, LANL, ORNL, ANL, NREL)

• Deconvoluting physical loss of Co and effect of Co²⁺ • Electrode decal-based MEAs tested under various % Co²⁺

- Co²⁺ effects were not observed during initial investigations.
- **Inactive membrane area** acts as a Co²⁺ sink, which suppresses Co²⁺ effects on performance.

Cobalt Contamination in PEMFC Electrodes

- R_{MT} increased with increasing Co²⁺ doping.
 Water uptake in the ionomer decreases with increasing Co²⁺ doping.
 - R_{sheet} increased with increasing Co²⁺ doping.
 ➢ Co²⁺ ion-exchanging with sulfonic acid sites lead to poor proton transport.
- Membrane resistance, and kinetic resistance remained relatively unchanged.

Cell: 0.25 mg_{Pt}/cm², I/C 0.9, TEC10E40E, N211, SGL 22BB, I/C 0.9 Testing: 5 cm² differential, 1000/3000 sccm H₂/Air, 150 kPa, 80°C

 $Z_{Re} [\Omega cm^2]$

17% Co

 $-100\% \text{ Co}^2$

0.2

100% RH, 2.0 A/cm

 R_{MT}

Summary and Future Work

#1: Groovy Electrode Enhances Performance.

- \succ Enhanced H⁺ and effective O₂ transport led to improved performance, particularly under dry conditions.
- Future work will couple experimental results with computational tools to further optimize structure for enhanced performance.

#2: Electrode cracks lead to improved performance after support AST.

 \succ After electrode collapses, cracks act as a short-cut for O₂ to diffuse to reaction sites.

Future work will examine the effect of electrode cracks on membrane durability during RH cycling.

#3: ~44% Co²⁺ exchange can be tolerated in electrode ionomers.

- ightarrow Co²⁺ exchange results in higher R_{MT} and R_{sheet}.
- > Future work will explore operating strategies/electrode designs to suppress Co²⁺ effects.

Aspirations: develop my own research group centered around hydrogen and fuel cell technology, to (1) advance the science and technology and (2) train next generation scientists and engineers.

Acknowledgements

- M2FCT, HFTO, Office of EERE (US DOE)
- Laboratory Directed Research and Development Program (LANL)
- National Science and Engineering Research Council (Canada)
- Siddharth Komini Babu, Jacob S. Spendelow, Rangachary Mukundan, Rod L. Borup (LANL)
- Computed-tomography by Brian Patterson and Ethan Walker (LANL)
- Microfabrication at Center for Integrated Nanotechnologies (SNL)
- Membrane measurements by Adlai Katzenberg, Ahmet Kusoglu (LBNL)
- Impedance modelling by Xiaohua Wang, Jui-Kun Peng, Rajesh K. Ahluwalia (ANL)

