

DME as a Renewable Hydrogen Carrier: Innovative Approach to Renewable Hydrogen Production

DOE project award #: TCF-21-24944

6-8 June 2022

DOE Hydrogen Program
2022 Annual Merit Review and Peer Evaluation Meeting

AMR Project ID #: ST242

Troy A. Semelsberger (PI)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Goals and Objectives

Ultimate Goal

Commercialize Oberon's renewable dimethyl ether (rDME™) as a hydrogen carrier supplying fuel-cell grade hydrogen and as a means of storing and transporting hydrogen on a global scale

Project Objectives

- Design, build, and demonstrate integrated DME-SR process using LANL's novel dual-catalyst bed to produce 25 kilograms of fuel-cell grade hydrogen per day (end-of-project TRL = 6-7)
- Validate hydrogen quality through fuel-cell performance testing
- Provide full documentation to Oberon related to design, bill-of-materials, and performance of integrated DME-SR prototype for Oberon's Phase 4 commercialization plan

Overview

Timeline and Budget

Project Start Date: 05 April 2022

Project End Date: 05 April 2025

Total Project Budget: \$3M

DOE Share: \$1.5M

Cost Share: \$1.5M

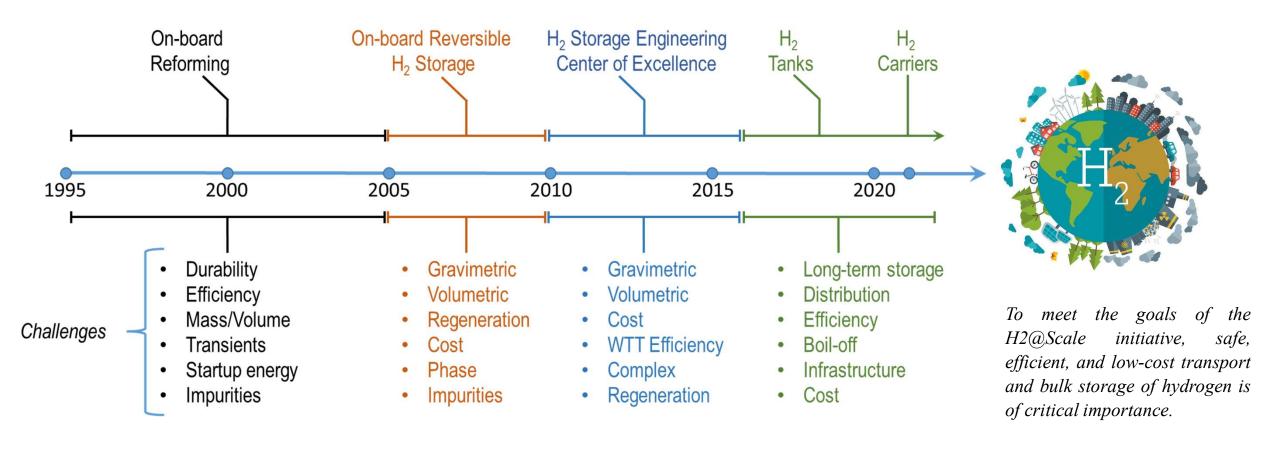
DOE Funds Spent*: \$0

Cost Share Funds Spent*: \$0

* As of ~03/01/2022

Team

Rebecca Boudreaux, Ph.D., President & CEO Cinch Munson, VP of Commercial Development David Mann, VP of Regulatory & Gov't Affairs Wendy Merkin, Director of Site Development Elliott Hicks, Chief Operating Officer


Partners

- Project Lead: LANL
 - Troy A. Semelsberger (PI, LANL)
- Co-PI(s):
 - Rod Borup (Co-PI, LANL),
 - Wendy Merkin (Co-PI, Oberon Fuels)
- Partner organization: Oberon Fuels

Troy A. Semelsberger, Ph.D. Rod Borup, Ph.D. Mike Heidlage, Ph.D. Jose Tafoya Steve Stringer (Tech Transfer)

Relevance/Potential Impact

DOE EERE

¿Can we do better than just another H₂ carrier?

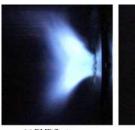
Relevance/Potential Impact

H₂ Carriers and Alternative Fuels must address:

- 1. Availability
- 2. Economics
- 3. Acceptability
- 4. Environmental & Emissions
- 5. Technology
- 6. Versatility
- 7. National Security

DME fueled buses

DME used as a H2 carrier

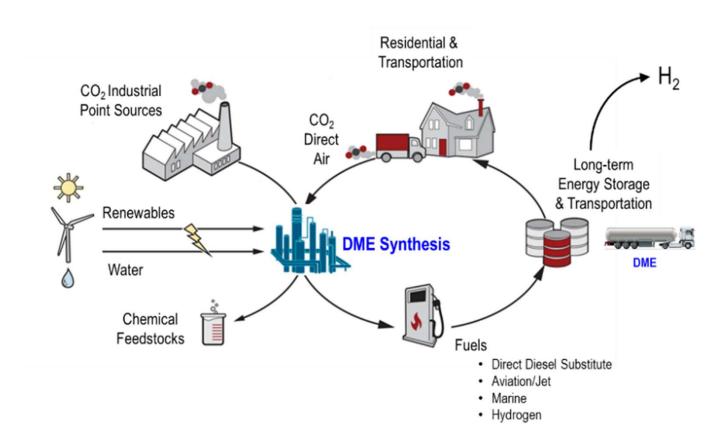

DME used for DME-Propane blends

DME fueled HD trucking

DME used as heating & cooking fuel

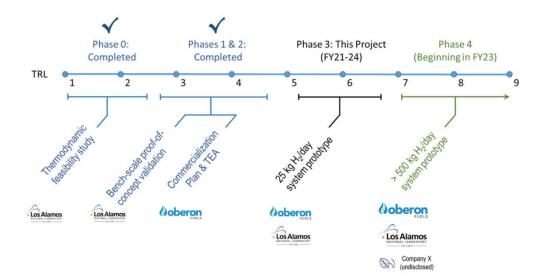
(b) Methane flame

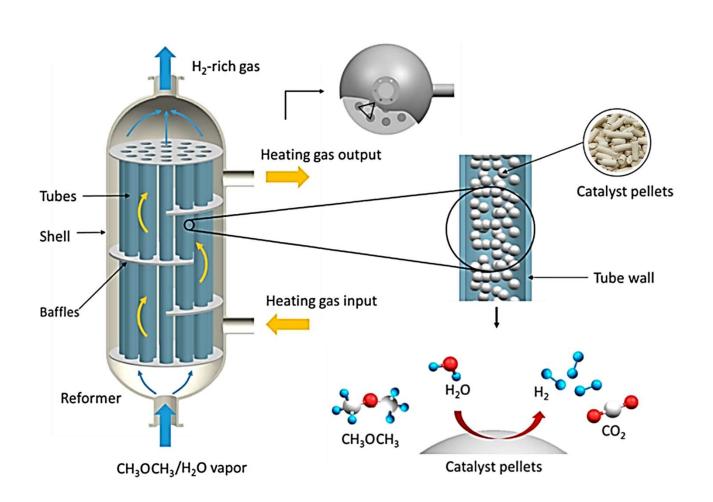
DME used as a turbine fuel


¿Is DME the missing link to the Hydrogen Economy?

Relevance/Potential Impact

Oberon-LANL CRADA addresses the long-term storage and distribution problem with hydrogen


Impact:


- ✓ Broadens the end-use cases of DME
- ✓ Provides the foundation for further scale-up to 500+ kg H₂/day
- Accelerates decarbonizing multiple market sectors
- ✓ Provides a gateway to the hydrogen economy
- ✓ Accelerates light- and heavy-duty fuel cell deployment

Approach

- 1. Design scaled-up reactor using LANL's catalyst to produce 25 kg H₂/day
- 2. Build prototype reactor
- 3. Demonstrate 25 kg H₂/day
- 4. Provide data and insights for scale-up to 500 kg H₂/day
- 5. Deploy commercial units delivering fuelcell grade hydrogen to FCEV (Phase 4)

Accomplishments

- 1. TCF Kick-off meeting held 5 April 2022
 - Team consensus on path forward
- 2. Initial lab preparation is underway to site reactor system at TA-46, Bldg 16, Rm 5B
- 3. Identified major components for reactor system
- 4. Initiated conversation to site Oberon's rDME tanks

Tech Transfer/Marketability

Innovative next generation technologies for the economic viability and commercialization of fuel-cell grade hydrogen from DME

Continued Success:

- ✓ Facilitate and collaborate with Oberon Fuels and Company X to further scale-up and demonstrate DME-SR technologies
- ✓ Direct DME synthesis via CO₂ reduction
- ✓ DME upgrading to marine and aviation fuel

DME Alternative Fuel					
Industry	Graphical Representation	Commercially Demonstrated	Focus of this Study		
Hydrogen	CH ₃ OCH ₃ Catalyst pellets	X	\checkmark		
Turbine Fuel		\checkmark	X		
Diesel Fuel Substitute	DME CONTRACTOR	\checkmark	X		
Aerosol Propellant		\checkmark	X		
Heating & Cooking Fuel	Fece 3000	\checkmark	X		
DME-Propane Blends	Soborton Propose	\checkmark	X		

Collaboration and Coordination

Collaboration

Partner		Roles
DOE HFTO		Sponsorship, guidance, support
Oberon Fuels	Oberon	rDME supplier, TEA/LCA outlooks, Phase 4 Coordination
LANL	LOS Alamos NATIONAL LABORATORY	Project lead, design, build, demonstrate prototype reactor, reporting

Coordination

- ✓ Planning, Assessing, Mitigating, & Solving
 - Constant team engagement with biweekly meetings
 - Clear, well-defined milestones and objectives
- ✓ Face-to-Face Meetings (F2F)
 - HFTO quarterly and annual F2F meetings
 - HFTO Peer Review
 - Participate in at least four F2F TCF project meetings during the 36-month project

Milestones

Fiscal Year	Due Date	Milestone Name/Description	Criteria	Туре
FY22	Q3-FY22 (June 2022)	LANL (M1): Finalize 50% design package for rDME-SR reactor scaled to 25 kg H2/day	Month 3	Milestone
	Q4-FY22 (Sept 2022)	LANL (M2): ■ Finalize 50% design package for integrated system scaled to 25 kg H2/day production rates ■ Order off-the-shelf BOP components (i.e, valves, tubing, fittings, mass flow controllers, etc)	Month 6	Milestone
FY23	Q1-FY23 (Dec 2022)	LANL(M3): ■ Finalize 100% design package for rDME-SR reactor scaled to 25 kg H2/day ■ Order fabrication of rDME-SR reactor	Month 9	Milestone
	Q2-FY23 (Mar 2023)	LANL (M4): Finalize 100% design package integrating rDME-SR reactor with hydrogen purification for 25 kg H2/day Order remaining off-the-shelf components to complete construction of integrated system	Month 12	Milestone
	Q3-FY23 (June 2023)	Oberon (M): • Deliver required DME for demonstration to LANL	Month 15	Milestone
	Q4-FY23 (Sept 2023)	LANL (M5): Field verification and commissioning	Month 18	Milestone
FY24	Q1-FY24 (Dec 2023)	LANL (M6): Demonstrate hydrogen production rates of 12.5 kg H2/day with full gas phase analysis of product stream	Month 24	Milestone
	Q2-FY24 (Sept 2024)	LANL (M7): • Demonstrate hydrogen production rates of 25 kg H2/day with full gas phase analysis of product stream • Verify and document hydrogen purity with HCD	Month 30	Milestone
FY25	Q1-FY25 (Dec 2024)	Validate and document fuel cell performance using rDME-SR hydrogen Document catalyst durability for continuous hydrogen operation	Month 33	Milestone
	Q2-FY25 (Mar 2025)	LANL (M9) Deliver final report documenting rDME-SR performance and hydrogen quality to Oberon	Month 36	Milestone

FY22 Future Work

Fiscal Year	Due Date	Milestone Name/Description	Criteria	Туре
FY22		LANL (M1): Finalize 50% design package for rDME-SR reactor scaled to 25 kg H2/day	Month 3	Milestone
	Q4-FY22 (Sept 2022)	 ► Finalize 50% design package for integrated system scaled to 25 kg H2/day production rates ◆ Order off-the-shelf BOP components (i.e, valves, tubing, fittings, mass flow controllers, etc) 	Month 6	Milestone

Summary

- 1. LANL-Oberon TCF Kick-off meeting held 5 April 2022
 - Attendees: LANL, DOE, and Oberon Fuels
- 2. NDA fully executed
- 3. Team consensus on milestones, deliverables, and time table
- 4. Biweekly coordination meetings scheduled for project duration
- 5. LANL lab preparation underway to site prototype reactor